Micromagnetic Simulation of Ferromagnetic Resonance in Nanoparticle with Lateral Gradient Magnetization

Article Preview

Abstract:

Micromagnetic simulation is performed on a ferromagnetic nanoparticle with lateral gradient magnetization in order to study its resonance modes and magnetizaiton dynamics mechenism under microwave frequency. The ferromagnetic resonance spectra and magnetzation reversal are calculated with dc magnetic field from 0 to 600 mT. The simulations show that an obvious border spin wave resnonace mode arises under a greater magnetic external field, which provide a new method to excite spin wave in magnonics; the hard phase determines the process of dynamical magnetization reversal under microwave frequency, which is different from the static magnetization reversal where the soft phase plays a key role.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

March 2013

Authors:

Export:

Price:

[1] R.P. Cowburn,J. Phys. D 33, R1(2000).

Google Scholar

[2] W.T. Xu, D.B. Watkins, L.E. DeLong, K. Rivkin, J.B. Ketterson, V.V. Metlushko, J. Appl. Phys. 95, 6645 (2004).

Google Scholar

[3] M.H. Seavry, Jr. and P.E. Tannenwald, Phys. Lett. I, 168 (1958).

Google Scholar

[4] S. Jung,B. Watkin, L. DeLong, J.B. Ketterson, and V. Chandrasekhar, Phys. Rev. B66, 132401 (2002).

Google Scholar

[5] C. -t. Yu, M.J. Pechan, and G.J. Mankey, Appl. Phys. Lett. 83, 3948 (2003).

Google Scholar

[6] I. Guedes, N.J. Zaluzec, M. Grimsditch, C. Metlushko, P. Vavasori, B. Ilic, P. Neuzil, and R. Kumar, Phys, Rev. B 62, 11719 (2000).

DOI: 10.1103/physrevb.62.11719

Google Scholar

[7] K. Rivkin, W.T. Xu, L.E. DeLong, V.V. Metlushko, and J.B. Ketterson, J. Magn. Master. 309, 317 (2007).

Google Scholar

[8] S. Morup, D.E. Madsen, C. Frandsen, C.R.H. Bahl, and M.F. Hansen, J. Phys.: Condens. Matter 19, 3203 (2007).

Google Scholar

[9] S. Gliga, M. Yan, R. Hertel, and C.M. Schneider, Phys. Rev. B 77, 060404(R) (2008).

Google Scholar

[10] Z.Y. Zhong, H.W. Zhang, Y.L. Jing, K. Tang, S. Liu, J. Magn. Magn. Mater. 314(2007) 43.

Google Scholar

[11] OOMMF User's Guide, Version 1. 2, M.J. Donahue and D.G. Porter, Interagency Report NISTIR 6373, National Institute of Standards and Technology, Gaithersburg, MD (Oct. 2002), http: /math. nist. gov/oommf.

DOI: 10.6028/nist.ir.6376

Google Scholar

[12] A. Aharoni: Introduction to the Theory of Ferromagnetism(Oxford University Press, 2000).

Google Scholar

[13] K.H. J Buschow, F.R. de Boer: Physics of Magnetism and Magnetic Materials(Springer, 2003).

Google Scholar

[14] Wentao Xu, D.B. Watkins, and L.E. Delong, J. Appl. Phys, 95, 11 (2004).

Google Scholar

[15] K. Yu. Guslienko and A.N. Slavin, J. Appl, Phys. 87, 6337 (2000).

Google Scholar

[16] V. Novosad, F.Y. Fradin, P.E. Roy, K.S. Buchanan, K.Y. Guslienko, and S.D. Bader, Phys. Rev. B 72, 024455 (2005).

Google Scholar

[17] C.C. Tsai, J. Choi, Sunglae Cho, S.J. Lee, B.K. Sarma, C. Thompson, O. Cheryashevskyy, I. Nevirkovets, V. Metlushko, K. Rivkin, and J.B. Ketterson, Phys. Rev. B 80, 014423 (2009).

DOI: 10.1103/physrevb.80.014423

Google Scholar

[18] C.C. Tsai, J. Choi, Sunglae Cho, S.J. Lee, B.K. Sarma, C. Thompson, O. Cheryashevskyy, I. Nevirkovets, and J.B. Ketterson, Rev. Sci. Instrum. 80, 023904 (2009).

Google Scholar

[19] Z.Y. Zhong, H.W. Zhang, X.L. Tang, Y.L. Jing, L.J. Jia, S. Liu, J. Magn. Magn. 321, 2345 (2009).

Google Scholar