Production of Biodiesel from Non-Edible Jatropha curcas Oil via Transesterification Using Nd2O3-La2O3 Catalyst

Article Preview

Abstract:

Biodiesel is viewed as the most promising alternative fuel to replace petroleum-based diesel since it is derived from renewable sources such as animal fats, vegetable oil and grease. Out of various vegetable oil resources for biodiesel production, Jatropha curcas oil (JCO) is a viable choice for biodiesel because it is non-edible and can be grown easily in a harsh environment. In this study, Nd2O3-La2O3 catalyst was prepared for transesterification of JCO with methanol, in order to evaluate its potential as a heterogeneous catalyst for biodiesel production. Under suitable transesterification condition at 210 °C with catalyst amount of 3 wt.%, methanol/oil molar ratio of 45 and reaction time for 4 h, the conversion of JCO to fatty acid methyl ester (FAME) achieved was more than 93% over Nd2O3-La2O3 catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

335-339

Citation:

Online since:

December 2012

Export:

Price:

[1] J.C. Juan, D.A. Kartika, T.Y. Wu and Y.H. Taufiq-Yap: Bioresour. Tech Vol. 102 (2011), pp.452-460.

Google Scholar

[2] M.M. Gui, K.T. Lee and S. Bhatia: Energy Vol. 33 (2008), pp.1646-1653.

Google Scholar

[3] S. Jumat and A. Rozaini: Sains Malaysiana Vol. 37 (2008), p.379–382.

Google Scholar

[4] K. Pramika: Renew. Energy Vol. 28 (2003), pp.239-298.

Google Scholar

[5] G.M. Gubitz, M. Mittelbach and MM. Trabi: Bioresour. Tech Vol. 67 (1999), pp.73-82.

Google Scholar

[6] de Oliveira, J.S. Leite, P.M. de Souza, L.B. Mello, V.M. Silva, E.C. Rubim, J.C. Meneghetti, S. MM.P. Suares and P.A. Z: Biomass and Bioenergy Vol. 33 (2009), pp.449-453.

DOI: 10.1016/j.biombioe.2008.08.006

Google Scholar

[7] H.J. Berchamans, K. Morishita and T. Takarada: Fuel doi: 1016/j. fuel. 2010. 01. 017, in press.

Google Scholar

[8] Y. Wang, S. Ou, P. Liu, F. Xue and S. Tang: J Mol Catal A: Chem Vol. 252 (2006), pp.107-12.

Google Scholar

[9] P.K. Sahoo and L.M. Das: Fuel Vol. 88 (2009), pp.1588-1594.

Google Scholar

[10] A.P. Vyas and N. Subrahmanyum, P.A. Patel: Fuel Vol. 88 (2009), pp.625-628.

Google Scholar

[11] H. Lu, Y. Liu, H. Zhou, Y. Yang, M. Chen and B. Liang: Comp. and Chem. Eng. Vol. 33 (2009), pp.1091-1096.

Google Scholar

[12] S. Yan, M. Kim, S.O. Salley and K.Y.S. Mg: Appl. Catal. A: Gen. Vol. 360 (2009), pp.163-170.

Google Scholar

[13] H. Sun, K. Hu, H. Low and X. Zheng: Energy Fuels Vol. 22 (2008), pp.2756-2760.

Google Scholar

[14] J.T. Kozlowski, M.T. Aronson and R.J. Davis: Appl. Catal. B: Env. Vol. 96 (2010), pp.508-515.

Google Scholar

[15] A.L. Patterson: Physical Review Vol. 56 (1939), pp.978-928.

Google Scholar

[16] J.Y. Ying, C.P. Mehnert and M.S. Wong, Angew: Chem. Int. Ed Vol. 38 (1999), pp.56-77.

Google Scholar

[16] A.A. Rownaghi, Y.H. Taufiq-Yap and F. Razaei: Chem Eng J Vol. 155 (2009), p. 14e22.

Google Scholar

[18] M. Di Serio, M. Ledda, M. Cozzolino, G. Minutillo and R. Tesser: Ind Eng Chen Res Vol. 45 (2006).

Google Scholar

[19] X.J. Liu, H.Y. He, Y.J. Wang and S.L. Zhu: Catal. Commun. Vol. 8 (2007), pp.1107-1111.

Google Scholar

[20] T. Ebiura, T. Echizen, A. Ishikawa, KK. Murai and T. Baba: Appl. Catal. A: Gen. Vol. 283 (2005), pp.111-116.

Google Scholar

[21] Y.H. Taufiq-Yap, H.V. Lee, R. Yunus and J.C. Juan: Biomass and Bioenergy 35 (2011), pp.827-834.

Google Scholar