Studies on Initial Stage of High Temperature Oxidation of Fe - 9 to 12%Cr Alloys in Water Vapour Environment

Article Preview

Abstract:

Fe - 9 to 12%Cr alloys are a material for the thick sections boiler components and steam lines of a power plant. The role Fe - 9 to 12%Cr alloys is becoming more prominent in the development of a new generation of Ultra-Supercritical (USC) Power Plant due to the target operating temperature is reaching 620 °C (893 K), in 100% steam condition as well as pressure in excess of 300 bar (30 × 106 Pa). In such condition, the integrity of Fe - 9 to 12%Cr alloys relies on the oxide scale formed during the time of exposure. However due to the high temperature and water vapor condition, it is a well known fact that, the formation of oxide scale is accelerated thus depleting the structural integrity of the Fe - 9 to 12%Cr alloys over the time. Studies show that not only the formation of protective oxide scale was suppressed but the formation of non-protective oxide scale was accelerated instead. Decades of studies done by various groups around the globe has yet to have consensual on the exact mechanism of this phenomenon. Initial stage oxidation of these alloys plays great roles in hope to understand the formation of oxide scale in water vapor condition at high temperature. This paper reviews previous research works to understand the initial stage oxidation of Fe - 9 to 12%Cr alloys at high temperature in water vapor condition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

100-107

Citation:

Online since:

July 2012

Export:

Price:

[1] F. Masuyama, Review History of Power Plants and Progress in Heat Resistant Steels, ISIJ International. 41 (2001) 612-625.

DOI: 10.2355/isijinternational.41.612

Google Scholar

[2] A. Shibli,and F. Starr, Some aspects of plant and research experience in the use of new high strength martensitic steel P91, International Journal of Pressure Vessels and Piping. 84 (2007) 114-122

DOI: 10.1016/j.ijpvp.2006.11.002

Google Scholar

[3] A. Fry, S. Osgerby, and M. Wright, Oxidation of Alloys in Steam Environments - A Review, National Physical Laboratory, Teddington, Middlesex, UK, 2002.

Google Scholar

[4] M. H. B. Ani, T. Kodama, M. Ueda, K. Kawamura, and T. Maruyama, Effect of Water Vapor on High Temperature Oxidation of Fe-Cr Alloys at 1073 K, Materials Transactions. 50 (2009) 2656-2663.

DOI: 10.2320/matertrans.m2009212

Google Scholar

[5] M. Ueda, M. Nanko, K. Kawamura, and T. Maruyama, Formation and disappearance of an internal oxidation zone in the initial stage of the steam oxidation of Fe–9Cr–0.26Si ferritic steel, Materials at High Temperature. 20 (2003) 109-114.

DOI: 10.1179/mht.2003.014

Google Scholar

[6] N. K. Othman, J. Zhang, and D. J. Young, Water Vapour Effects on Fe–Cr Alloy Oxidation, Oxidation of Metals. 73 (2010) 337–352.

DOI: 10.1007/s11085-009-9183-9

Google Scholar

[7] J. Żurek, M. Michalik, F. Schmitz, T. -U. Kern, L. Singheiser, and W. J. Quadakkers, The Effect of Water-Vapor Content and Gas Flow Rate on the Oxidation Mechanism of a 10%Cr-Ferritic Steel in Ar-H2O Mixtures, Oxidation of Metals. 63 (2005) 401-422.

DOI: 10.1007/s11085-005-4394-1

Google Scholar

[8] R. Peraldi, and B. A. Pint, Effect of Cr and Ni Contents on the Oxidation Behavior of Ferritic and Austenitic Model Alloys in Air with Water Vapor, Oxidation of Metals. 61 (2004) 463-483.

DOI: 10.1023/b:oxid.0000032334.75463.da

Google Scholar

[9] J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, W.J. Quadakkers, Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments, Corrosion Science. 48 (2006) 3428-3454.

DOI: 10.1016/j.corsci.2006.02.002

Google Scholar

[10] E.Essuman., G.H. Meier, J. Żurek, M. Hänsel, and W. J. Quadakkers, The Effect of Water Vapor on Selective Oxidation of Fe-Cr Alloys, Oxidation of Metals. 69 (2008) 143-162.

DOI: 10.1007/s11085-007-9090-x

Google Scholar

[11] G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. P. Abellan, T. Olszewski, L. N. Hierro, W. J. Quadakkers, and G. R. Holcomb, Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe-Cr and Fe-Cr-X Alloys, Oxidation of Metals. 74 (2010) 319-340.

DOI: 10.1007/s11085-010-9215-5

Google Scholar

[12] N.K. Othman, N.Othman, J. Zhang, and D.J. Young, Kesan Wap Air Terhadap Pengoksidaan Berkitar pada Aloi Fe-Cr (Water Vapour Effects of Cyclic Oxidation on Fe-Cr Alloys), Sains Malaysiana. 39 (2010) 249-259.

DOI: 10.1016/j.corsci.2010.04.026

Google Scholar

[13] P.J. Ennis, and W. J. Quadakkers, Mechanisms of steam oxidation in high strength martensitic steels, International Journal of Pressure Vessels and Piping. 84 (2007) 75-81.

DOI: 10.1016/j.ijpvp.2006.09.007

Google Scholar

[14] M. Nakai, K. Nagai, Y. Murata, M. Morinaga, S. Matsuda, and M. Kanno, Correlation of High-temperature Steam Oxidation with Hydrogen Dissolution in Pure Iron and Ternary High - chromium Ferritic Steel, ISIJ International. 45 (2005) 1066-1072.

DOI: 10.2355/isijinternational.45.1066

Google Scholar

[15] O. Kubaschewski, and C.B. Alcock, Metallurgical Thermochemistry, 5th ed, Pergamon Press, Oxford (1979).

Google Scholar

[16] I. Barin, and G. Platzki, Thermochemical Data of Pure Substances, VCH, Weinheim (1995).

Google Scholar

[17] C. Wagner, Types of Reaction in the Oxidation of Alloys, Zeitschrift für Electrochemie, 63 (7), (1959), 772-782.

Google Scholar

[18] M. Ueda, K. Kawamura, and T. Maruyama, Void Formation in Magnetite Scale Formed on Iron at 823 K – Elucidation by Chemical Potential Distribution-, Materials Science Forum, 522-523 (2006) 37-44.

DOI: 10.4028/www.scientific.net/msf.522-523.37

Google Scholar

[19] A. Kaderi, A. Z. M. Zainal, H. Ani, and R. Othman, Observation on Void formed in Oxide Scale of Fe-Cr-Ni alloy at 1073 K in Dry and Humid Environments, IIUM Engineering Journal, 12 (5), (2011) 69-78.

DOI: 10.31436/iiumej.v12i5.235

Google Scholar

[20] M.Ueda, K. Kawamura, and T. Maruyama, Void Formation at the Interface of the Duplex Scale Formed on Fe-5Cr Alloy at 773K, Materials Science Forum, 696, (2011) 34-38.

DOI: 10.4028/www.scientific.net/msf.696.34

Google Scholar

[21] T. Maruyama, M. Ueda, and K. Kawamura, Void Formation in the Growing Scale induced by the Divergence of the Diffusive Ionic Flux in High Temperature Oxidation of Metals, Defect and Diffusion Forum, 289-292 (2009) 1-13.

DOI: 10.4028/www.scientific.net/ddf.289-292.1

Google Scholar

[22] T. Maruyama, K. Akiba, M. Ueda, and K. Kawamura, Void Formation in Growing Oxide Scales with Schottky Defects and p-type conduction, Materials Science Forum, 595-598 (2008) 1039-1046.

DOI: 10.4028/www.scientific.net/msf.595-598.1039

Google Scholar