Characterization of PM2.5- and PM10-Bound Polycyclic Aromatic Hydrocarbons in Urban and Rural Areas in Beijing during the Winter

Article Preview

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) were here investigated in airborne particulate matter (PM2.5 and PM10) samples collected in urban (including residential, commercial, industrial, and traffic zones) and rural areas in and around Beijing from December 2005 to January 2006. Sixteen polycyclic aromatic hydrocarbons adsorbed onto fine- (PM2.5) and coarse- (PM10) grained samples were analyzed by gas chromatography-mass spectrometry (GC-MS). The mean total PAH concentrations were 30.1 and 80.1 ng/m3 in PM2.5, and 44.1 and 99.8 ng/m3 in PM10 in urban and rural areas, respectively. PAHs were mostly adsorbed on small inhalable particles (>50%) with four to six rings, which dominated both fractions. Strong correlations between PM-associated extractable organic matter (EOM) and particulate PAHs were found, especially in PM2.5, indicating that PM-PAHs concentrations were strongly influenced by PM-associated EOM. Of the different functional areas studied, the total PAH concentrations in both fractions were highest in industrial and rural areas and lowest in traffic zones. This may have been the result of the different emission sources and more efficient energy structures that occur during the winter. Distribution profiles and diagnostic ratios revealed that coal combustion was the major source of PM2.5- and PM10- associated PAHs. Additional sources of PAHs may include vehicle emissions, natural gas combustion and wood burning. BaP-based toxic equivalence factor (BaPeq), BaP-equivalent carcinogenic power (BaPE) and a sum of five carcinogenic PAHs showed that the industrial and rural areas were the most vulnerable to PAHs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

1479-1491

Citation:

Online since:

May 2012

Export:

Price:

[1] W.F. Rogge, L.M. Hildemann, M.A. Mazurek, G.R. Cass and B.R.T. Simoneit: Environ. Sci. Technol. Vol. 27 (1993), 636–651

DOI: 10.1021/es00041a007

Google Scholar

[2] S.C. Lee, K.F. Ho, L.Y. Chan, B. Zielinska and C.J. Chow: Atmos. Environ. Vol. 35 (2001), 5949–5960

Google Scholar

[3] Z. Li, A. Sjodin, E.N. Porter, D.G. Jr Patterson, L.L. Needham, S. Lee, A.G. Russell and J.A. Mulholland: Atmos. Environ. Vol. 43 (2009) 1043–1050

Google Scholar

[4] S.C. Chen, C.M. Liao: Sci. Total Environ. Vol. 366 (2006), 112–123

Google Scholar

[5] E. Manoli, A. Kouras and C. Samara: Chemosphere Vol. 56 (2004), 867–878

Google Scholar

[6] A.Cincinelli, M.D. Bubba, T. Martellini, A. Gambaro and L. Lepri: Chemosphere, Vol. 68 (2007), 472–478

DOI: 10.1016/j.chemosphere.2006.12.089

Google Scholar

[7] S.D. Liu, X.H. Xia, L.Y. Yang, M.H. Shen, R.M. Liu: J. Hazard. Mater. Vol. 177 (2010), 1085–1092

Google Scholar

[8] J.P. Zhao, F.W. Zhang, J.S. Chen and Y. Xu: J. Environ. Sci. Vol. 22 (2010), 1014–1022

Google Scholar

[9] N.Y.M.J. Omar, T.C. Mon, N.A. Rahman and M.R.B. Abas: Sci. Total Environ. Vol. 369 (2006), 76-81

Google Scholar

[10] R. Ladji, N. Yassaa, C. Balducci, A. Cecinato and B.Y. Meklati: Sci. Total Environ. Vol. 408 (2009), 415–424

DOI: 10.1016/j.scitotenv.2009.09.033

Google Scholar

[11] K. Ravindra, R. Sokhi, R.V. Grieken: Atmos. Environ. Vol. 42 (2008), 2895–2921

Google Scholar

[12] L.Y. He, M. Hu, X.F. Huang, Y.H. Zhang and X.Y. Tang: Sci. Total Environ. Vol. 359 (2006), 167–176

Google Scholar

[13] S.C. Zhang, W. Zhang and Y.T. Shen and K.Y. Wang: Atmos. Res. Vol. 89 (2008), 138–148

Google Scholar

[14] X.F. Wang, H.X. Cheng, X.B. Xu, G.M. Zhuang and C.D. Zhao: J. Hazard. Mater. Vol. 157 (2008), 47–56

Google Scholar

[15] D.M. Liu, S.P. Gao and X.H. An: Adv. Atmos. Sci. Vol. 25 (2008), 297–305

Google Scholar

[16] O. Sevastyanova, Z. Novakova, K. Hanzalova, B. Binkova, R.J. Sram and J. Topinka: Mutat. Res. Vol. 649 (2008), 179–186

DOI: 10.1016/j.mrgentox.2007.09.010

Google Scholar

[17] J.L. Feng, M. Hu, C.K. Chan, P.S. Lau, M. Fang, L.Y. He and X.Y. Tang: Atmos. Environ. Vol. 40 (2006), 3983–3994

Google Scholar

[18] Z.G. Guo, L.F. Sheng, J.L. Feng and M. Fang: Atmos. Environ. Vol. 37 (2003), 1825–1834

Google Scholar

[19] J.H. Tan, X.H. Bi, J.Q. Duan, X.L. Tang, G.Y. Sheng and J.M. Fu: Atmos. Res. Vol. 80 (2006), 250– 262

Google Scholar

[20] H.S. Hong, H.L. Yin, X.H. Wang and C.X. Ye: Atmos. Res. Vol. 85 (2007), 429–441

Google Scholar

[21] C. Bourotte, M.C. Forti, S. Taniguchi, M.C. Bícego and P.A. Lotufo: Atmos. Environ. Vol. 39 (2005), 3799–3811

Google Scholar

[22] R. Ladji, N. Yassaa, C. Balducci, A. Cecinato and B.Y. Meklati: Atmos. Res. Vol. 92 (2009), 258–269

DOI: 10.1016/j.atmosres.2008.12.002

Google Scholar

[23] Information on http://www.bjepb.gov.cn

Google Scholar

[24] Information on http://www.sepa.gov.cn

Google Scholar

[25] J.L. Feng, C.K. Chan, M. Fang, M. Hu, L.Y. He and X.Y. Tang: Chemosphere Vol. 61 (2005), 623–632

Google Scholar

[26] K. Karar, A.K. Gupta: Atmos. Res. Vol. 81 (2006), 36–53

Google Scholar

[27] M. Akyüz, H. Cabuk: J. Hazard. Mater. Vol. 170 (2009), 13–21

Google Scholar

[28] J. Schnelle-Kreis, I. Gebefügi, G. Welzl, T. Jaensch and A. Kettrup: Atmos. Environ. Vol. 35 (2001, Supplement), S71–S81.

Google Scholar

[29] Y. Kameda, J. Shirai, T. Komai, J. Nakanishi and S. Masunaga: Sci. Total Environ. Vol. 340 (2005) 71–80

Google Scholar

[30] C.L. Gigliotti, L.A. Totten, J.H. Offenberg, J. Dachs, J.R. Reinfelder, E.D. Nelson, I.V. Glenn and S.J. Eisenreich: Environ. Sci. Technol. Vol. 39 (2005), 5550–5559

DOI: 10.1021/es050401k

Google Scholar

[31] A. Motelay-Massei, T. Harner, M. Shoeib, M. Diamond, G. Stern and B. Rosenberg: Environ. Sci. Technol. Vol. 39 (2005), 5763–5773

DOI: 10.1021/es0504183

Google Scholar

[32] W.X. Liu, H. Dou, Z.C. Wei, B. Chang, W.X. Qiu, Y. Liu and S. Tao: Sci. Total Environ. Vol. 407 (2009), 1436–1446

Google Scholar

[33] K. Ravindra, L. Bencs, E. Wauters, J.D. Hoog, F. Deutsch, E. Roekens, N. Bleux, P. Bergmans and R.Van Grieken: Atmos. Environ. Vol. 40 (2006), 771–785

DOI: 10.1016/j.atmosenv.2005.10.011

Google Scholar

[34] H. Guo, S.C. Lee, K.F. Ho, X.M. Wang and S.C. Zou: Atmos. Environ. Vol. 37 (2003), 5307–5317

Google Scholar

[35] H.Z. Shen, S. Tao, R. Wang, B. Wang, G.F. Shen, W. Li, S.S. Su, Y. Huang, X.L. Wang, W.X. Liu, B.G. Li and K. Sun: Atmos. Environ. Vol. 45 (2011), 2067–(2073)

Google Scholar

[36] T.M.C.M. de Kok, H.A.L. Driece, J.G.F. Hogervorst and J.J. Briedé: Mutat. Res. Vol. 613 (2006), 103–122

Google Scholar

[37] W. Guo, M.C. He, Z.F. Yang, C.Y. Lin and X.C. Quan: J. Hazard. Mater. Vol. 186 (2011), 1193–1199

Google Scholar

[38] W.F. Rogge, L.M. Hildemann, M.A. Mazurek, G.R. Cass and B.R.T. Simoneit: Environ. Sci. Technol. Vol. 27 (1993), 2736–2744

DOI: 10.1021/es00049a012

Google Scholar

[39] M.F. Simcik, S.J. Eisenreich and P.J. Lioy: Atmos. Environ. Vol. 33 (1999), 5071–5079

Google Scholar

[40] K.F. Chang, G.C. Fang, J.C. Chen and Y.S. Wu: Environ. Pollut. Vol. 142 (2005), 388–396

Google Scholar

[41] N.R. Khalili, P.A. Scheff and T.M. Holsen: Atmos. Environ. Vol. 29 (1995), 533–542

Google Scholar

[42] L.Z. Zhu, H. Lu, S.G. Chen and T. Amagai: J. Hazard. Mater. Vol. 162 (2009), 1165–1170

Google Scholar

[43] X.H. Bi, G.Y. Sheng, P.A. Peng, Y.J. Chen, Z.Q. Zhang and J.M. Fu: Atmos. Environ. Vol. 37 (2003), 289–298

Google Scholar

[44] R.M. Harrison, D.J.T. Smith and L. Luhana: Environ. Sci. Technol. Vol. 30 (1996), 825–832

Google Scholar

[45] S.P. Wu, S. Tao, Z.H. Zhang, T. Lan and Q. Zuo: Environ. Pollut. Vol. 147 (2007), 203–210

Google Scholar

[46] T.P. Behymer, R.A. Hites: Environ. Sci. Technol. Vol.19 (1985), 1004–1006

Google Scholar

[47] N. Vardar, F. Esen and Y.Tasdemir: Environ. Pollut. Vol. 155 (2008), 298-307

Google Scholar

[48] R. Lohmann, G.L. Northcott and K.C. Jones: Environ. Sci. Technol. Vol. 34 (2000), 2892-2899

Google Scholar

[49] M.R. Sienra, N.G. Rosazza and M. Préndez: Atmos. Res. Vol. 75 (2005), 267–281

Google Scholar

[50] I.G. Kavouras, P. Koutrakis, M. Tsapakis, E. Lagoudaki, E.G. Stephanou, V.D. Baer and P. Oyola: Environ. Sci. Technol. Vol. 35 (2001), 2288–2294

DOI: 10.1021/es001540z

Google Scholar

[51] E. Galarneau: Atmos. Environ. Vol. 42 (2008), 8139–8149

Google Scholar

[52] C.K. Li, R.M. Kamens: Atmos. Environ. Vol. 27A (1993), 523–532

Google Scholar

[53] R.M. Dickhut, E.A. Canuel, K.E. Gustafson, K. Liu, K.M. Aezayus, S.E. Walker, G. Edgecombe, M.O. Gaylor and E.H. Macdonald: Environ. Sci. Technol. Vol. 34 (2000), 4635–4640

DOI: 10.1021/es000971e

Google Scholar

[54] P. Masclet, M.A. Bresson and G. Mouvier: Fuel Vol. 66 (1987), 556–562

Google Scholar

[55] N. Yassaa, B.Y. Meklati, A. Cecinato and F. Marino: Environ. Sci. Technol. Vol. 35 (2001), 306–311

Google Scholar

[56] A.M. Mastral, J.M. López, M.S. Callén, T. García, R. Murillo and M.V. Navarro: Sci. Total Environ. Vol. 307 (2003), 111–124

Google Scholar

[57] G.H. Wang, L.M. Huang, X. Zhao, H.Y. Niu and Z.X. Dai: Atmos. Res. Vol. 81 (2006), 54– 66

Google Scholar

[58] M. Zheng, M. Fang: Water Air Soil Poll. Vol. 117 (2000), 175–189

Google Scholar

[59] M.P. Fraser, G.R. Cass, B.R.T. Simoneit and R.A. Rasmussen: Environ. Sci. Technol. Vol. 32 (1998), 1760–1770

Google Scholar

[60] I.C.T. Nisbet, P.K. LaGoy: Regul. Toxicol. Pharm. Vol. 16 (1992), 290–300

Google Scholar