Synthesis and Characterization of Electrical Properties of Bismuth Titanate

Article Preview

Abstract:

Bismuth titanate solid solutions, Bi12+xTiO10+δ (0 ≤ x ≤ 0.6), were synthesized by conventional solid state method at sintering temperature of 700°C for 48 h. Structural studies were performed by powder X-ray diffraction (XRD) analysis and revealed that single-phase materials were obtained with a general formula of Bi12+xTiO10+δ (0 ≤ x ≤ 0.6). The electrical properties of all the single-phase samples were studied using the impedance spectroscopy technique. Further characterization of the materials was carried out using differential thermal analysis (DTA) and indicated that no phase transition was observed. The TGA analysis was observed and found that all the materials were thermally stable.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-105

Citation:

Online since:

April 2012

Export:

Price:

[1] G. Mairesse, In fast ion transpot in solids, ed. B. Scrosati, Armsterdam: Kluver, 1993.

Google Scholar

[2] H. A. Harwig, Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. Solid State Chemistry. 26 (1978) 265-274.

DOI: 10.1016/0022-4596(78)90161-5

Google Scholar

[3] H. A. Harwig, On the structure of bismuth sesquioxide: α, β, γ and δ-phase. Zeitschrift fur Anorganishe und Allgemiene Chemie. 444 (1978) 151-166.

Google Scholar

[4] E. M. Levin and R. S. Roth, Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on the polymorphism of Bi2O3, J. Res. Nat. Bur. Stand. 68A (1964) 197-206.

DOI: 10.6028/jres.068a.020

Google Scholar

[5] L. G. Sillen, X-ray studies on bismuth trioxide, Arkiv for Kemi, Mineralogi och Geologi 12A (18) (1937) 1-15.

Google Scholar

[6] V. G. Gattow and H. Schrorder, Die Kristallstruktur der modifikation von wismuth (III)-oxide (δ- Bi2O3), Zeitschrift für anorganische und allgemeine Chemie 328 (1962) 44-68.

DOI: 10.1002/zaac.19623180307

Google Scholar

[7] T. Takahashi and H. Iwahara, Oxide ion conductors based on bismuth sesquioxide, Material Research Buletin 13 (1978) 1447-1453.

DOI: 10.1016/0025-5408(78)90138-1

Google Scholar

[8] N. M. Sammes, G. A. Tompsett, H. Nafe and F. Aldinger, Review, Bismuth Based Oxide Electrolytes - Structure and Ionic Conductivity, 19 (1999) 1801-1826.

DOI: 10.1016/s0955-2219(99)00009-6

Google Scholar

[9] M. Yashima and D. Ishimura, Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3, Chemical Physics Letters 378 (2003) 395-399.

DOI: 10.1016/j.cplett.2003.07.014

Google Scholar

[10] S. H. Xu, W. F. Shangguan, J. Yuan, J. W. Shi and M. X. Chen, Photocatalytic properties of bismuth titanate, Bi12TiO20 prepared by co-precipitation processing, Materials Science andEngineering B, 137 (2007) 108–111.

DOI: 10.1016/j.mseb.2006.10.019

Google Scholar

[11] H. P. Zhang, M. K. Lü, S. W. Liu, Z. L. Xiu, G. J. Zhou, Y. Y. Zhou, Z. F. Qiu, A. Y. Zhang and Q. Ma, Preparation and photocatalytic properties of sillenite Bi12TiO20 films, Surface & Coatings Technology, 202 (2008) 4930–4934.

DOI: 10.1016/j.surfcoat.2008.04.081

Google Scholar

[12] N. Thanabodeekij, E. Gulari and S. Wongkasemjit, Bi12TiO20 synthesized directly from bismuth (III) nitrate pentahydrate and titanium glycolate and its activity, Powder Technology 160 (2005) 203 – 208.

DOI: 10.1016/j.powtec.2005.08.015

Google Scholar

[13] W. F. Yao, H. Wang, X. H. Xu, X. F. Cheng, J. Huang, S. X. Shang, X. N. Yang and M. Wang, Photocatalytic property of bismuth titanate Bi12TiO20 crystals, Applied Catalysis A:General 243 (2003) 185–190.

DOI: 10.1016/s0926-860x(02)00564-1

Google Scholar

[14] J. K. Zhou, Z. G. Zou, A. K. Ray and X. S. Zhao, Preparation and Characterization of Polycrystalline Bismuth Titanate Bi12TiO20 and Its Photocatalytic Properties under Visible Light Irradiation. Ind. Eng. Chem. Res. 46 (2007) 745-749.

DOI: 10.1021/ie0613220

Google Scholar

[15] S. Lanfredia and M. A. L. Nobrea, Conductivity mechanism analysis at high temperature in bismuth titanate: A single crystal with sillenite-type structure. Applied Physics Letters 86 (2005) Art. No. 081916

DOI: 10.1063/1.1869542

Google Scholar