Preparation and Photocatalysis Properties of TiO2/Graphene Nanocomposites

Article Preview

Abstract:

In this work, a novel photocatalyst with excellent photocatalytic activities was developed by the combination of TiO2 with graphene oxide (GO). GO was firstly prepared by the chemical oxidation of graphite through Hummers method and the subsequent dispersion and exfoliation in water. Then, GO and P25 nanoparticles (commercial TiO2) were used as raw materials to synthesize TiO2/graphene (TiO2/GE) nanocomposites by using a one-step solvothermal method. TEM images clearly showed that TiO2 nanomaterials (the size of about 15~20 nm) were distributed well onto the two-dimensional (2D) graphene sheets, indicating the formation of TiO2/GE nanocomposites. XRD results indicated that TiO2/GE nanocomposites exhibited TiO2 crystalline phase structure. Meanwhile, it was demonstrated from the methylene blue (MB) photodegradation results that TiO2/GE nanocomposites possessed excellent photocatalytic activities with potential applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 430-432)

Pages:

1005-1008

Citation:

Online since:

January 2012

Export:

Price:

[1] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 95 (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[2] S. Kim, B. Fisher, H.J. Eisler, M. Bawendi, Type-II Quantum Dots: CdTe/CdSe (Core/Shell) and CdSe/ZnTe (Core/Shell) Heterostructures, J. Am. Chem. Soc. 125 (2003) 11466-11467.

DOI: 10.1021/ja0361749

Google Scholar

[3] M. Suzuki, T. Ito, Y. Taga, Photocatalysis of sculptured thin films of TiO2, Appl. Phys. Lett. 78 (2001) 3968-3971.

DOI: 10.1063/1.1380730

Google Scholar

[4] J. Schwitzgebel, J.G. Ekerdt, H. Gerischer, A. Heller, Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions, J. Phys. Chem. 99 (1995) 5633-5638.

DOI: 10.1021/j100015a055

Google Scholar

[5] D. Chen, H. Zhang, S. Hu, J.H. Li, Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnO-TiO2 Nanocomposites, J. Phys. Chem. C 112 (2008) 117-122.

DOI: 10.1021/jp077236a

Google Scholar

[6] N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, L.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy, ACS Nano 3 (2009).

DOI: 10.1021/nn900694t

Google Scholar

[7] H.L. Wang, J.T. Robinson, G. Diankov, H.J. Dai, Nanocrystal Growth on Graphene with Various Degrees of Oxidation, J. Am. Chem. Soc. 132 (2010) 3270-3271.

DOI: 10.1021/ja100329d

Google Scholar

[8] E. Bekyarova, M.E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W.A. de Heer, R.C. Haddon, Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups, J. Am. Chem. Soc. 131 (2009) 1336-1337.

DOI: 10.1021/ja8057327

Google Scholar

[9] G. Williams, B. Seger, P.V. Kamat, TiO2-Graphene Nanocomposites, UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano 2 (2008) 1487-1491.

DOI: 10.1021/nn800251f

Google Scholar

[10] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[11] Y.X. Xu, H. Bai, G.W. Lu, C. Li, G.Q. Shi, Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. Soc. 130 (2008) 5856-5857.

DOI: 10.1021/ja800745y

Google Scholar

[12] G.X. Wang, X.P. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries, Carbon 47 (2009) 2049-(2053).

DOI: 10.1016/j.carbon.2009.03.053

Google Scholar

[13] Q. Wang, Z.H. Wen, J.H. Li, Solvent-Controlled Synthesis and Electrochemical Lithium Storage of One-Dimensional TiO2 Nanostructures, Inorg. Chem. 45 (2006) 6944-6949.

DOI: 10.1021/ic060477x

Google Scholar