Strain Gradient Plasticity Applied to Material Cutting

Article Preview

Abstract:

To better understand the complex phenomena involved in the cutting process is to better qualify the behaviour law used in the simulatiotrn of machining processes (analytical and finite element modeling). The aim of this paper is to present the choices made regarding the behaviour law in this context, indeed, commonly used behaviour laws such as Jonhson-Cook can bring unsatisfactory results especially for high strain and large deformation processes. This study develops a large deformation strain-gradient theoretical framework with hypothesis linked with to metal cutting processes. The emphasis of the theory is placed on the existence of high shear phenomena creating a texture in the primary shear band. To account for the texture, the plastic spin is supposed to be relevant in this theory. It is shown that the theory as the capability of interpreting the complex phenomena found in machining and more particularly in high speed machining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-115

Citation:

Online since:

December 2011

Export:

Price:

[1] O. Cahuc, P. Darnis, A. Gérard, J. -L. Battaglia: Experimental and analytical balance sheet in turning applications, Int. J. Adv. Manuf. Technol. 18, 9 (2001), pp.648-656.

DOI: 10.1007/s001700170025

Google Scholar

[2] Y. Couétard: Capteurs de forces a deux voies et application a la mesure dun torseur de forces, Brevet francais - CNRS- 93403025. 5 N° d'ordre: 2240.

Google Scholar

[3] D. Toulouse, Y. Couétard, O. Cahuc, A. Gérard: An experimental method for the cutting process in three dimensions, Journal de Physique IV 7, C3, (1997), pp.21-26.

DOI: 10.1051/jp4:1997306

Google Scholar

[4] E. Cosserat, F. Cosserat: Théorie des corps déformables, Hermann, (1909).

Google Scholar

[5] O. Cahuc, P. Darnis, R. Laheurte: Mechanical and thermal experiments in cutting process for new behaviour law, Int. J. Form. Proc. 10, 2, (2007), pp.235-269.

DOI: 10.3166/ijfp.10.235-269

Google Scholar

[6] R. Mindlin, N. Eshel: On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures 4, 1, (1968), pp.109-124.

DOI: 10.1016/0020-7683(68)90036-x

Google Scholar

[7] R. A. Toupin: Elastic material with couple-stresses, Arch. Rat. Mach. Ana. 11, (1962), pp.385-414.

Google Scholar

[8] P. Germain: Cours de Mécanique des milieux continus, Tome 1 Théorie Générale, Masson et Cie, (1973).

DOI: 10.1017/s0022112076221324

Google Scholar

[9] N. Fleck, J. Hutchinson: Strain gradient plasticity, Advances in Applied Mechanics, 33, (1997), pp.295-361.

DOI: 10.1016/s0065-2156(08)70388-0

Google Scholar

[10] P. Gudmundson: A unified treatment of strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 52, 6, (2004), pp.1379-1406.

DOI: 10.1016/j.jmps.2003.11.002

Google Scholar

[11] M. Gurtin: A gradient theory of small-deformation isotropic plasticity that accounts for the burgers vector and for dissipation due to plastic spin, Journal of the Mechanics and Physics of Solids, 52, 11, (2004), pp.2545-2568.

DOI: 10.1016/j.jmps.2004.04.010

Google Scholar

[12] M. Gurtin: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, Journal of the Mechanics and Physics of Solids, 50, 1, (2002), p. 5â"32.

DOI: 10.1016/s0022-5096(01)00104-1

Google Scholar

[13] C. Polizzotto: A nonlocal strain gradient plasticity theory for finite deformations, International Journal of Plasticity, 25, 7, (2009), pp.1280-1300.

DOI: 10.1016/j.ijplas.2008.09.009

Google Scholar

[14] S. P. Lele, L. Anand: A large-deformation strain-gradient theory for isotropic viscoplastic materials, International Journal of Plasticity, 25, 3, (2009), pp.420-453.

DOI: 10.1016/j.ijplas.2008.04.003

Google Scholar

[15] G. Z. Voyiadjis, B. Deliktas: Mechanics of strain gradient plasticity with particular reference to decomposition of the state variables into energetic and dissipative components, International Journal of Engineering Science, 47, 11-12, (2009).

DOI: 10.1016/j.ijengsci.2009.05.013

Google Scholar

[16] R. Abu Al-Rub, G. Voyiadjis, D. Bammann: A thermodynamic based higher-order gradient theory for size dependent plasticity, International Journal of Solids and Structures, 44, 9, (2007), pp.2888-2923.

DOI: 10.1016/j.ijsolstr.2006.08.034

Google Scholar

[17] R. Abu Al-Rub, G. Voyiadjis: Determination of the Material Intrinsic Length Scale of Gradient Plasticity Theory, International Journal for Multiscale Computational Engineering, 2, 3, (2004), pp.377-400.

DOI: 10.1615/intjmultcompeng.v2.i3.30

Google Scholar

[18] E. Kröner: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Archive for Rational Mechanics and Analysis, 4, 1959, pp.273-334.

DOI: 10.1007/bf00281393

Google Scholar

[19] P. Cermelli: On the characterization of geometrically necessary dislocations in finite plasticity, Journal of the Mechanics and Physics of Solids, 49, 7, (2001), pp.1539-1568.

DOI: 10.1016/s0022-5096(00)00084-3

Google Scholar

[20] M.F. Ashby: The deformation of plastically non-homogeneous alloys, Philosophical Magazine, 21, (1970), pp.329-424.

Google Scholar

[21] J.F. Nye: Some geometrical relations in dislocated crystals, Acta Metallurgica, 1, (1953), pp.153-162.

DOI: 10.1016/0001-6160(53)90054-6

Google Scholar