Rapid Solidification Processing: Melt Spinning of Al-High Si Alloys

Article Preview

Abstract:

Rapid solidification processing is a technique used for refining the primary silicon and seems to be the most promising technique for the production of high Si Al-Si alloys (i.e. Si content greater than 17 wt.%). There are number of routes which can be used to produce rapid solidification, including spray methods, weld methods, and chill methods. Of these, melt spinning is the most widely used industrially due to its high cooling rate and the ability to process large volumes of materials. This paper summarizes melt spinning and rapid solidification, highlighting a potential production route for aluminium-high silicon alloys involving melt spinning followed by hot isostatic processing.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

1740-1746

Citation:

Online since:

November 2011

Authors:

Export:

Price:

[1] E. J. Lavernia, J. D. Ayers, and T. S. Srivatsan, Rapid Solidification Processing with Specific Application to Aluminium Alloys, International Materials Reviews, vol. 37, pp.1-44, (1992).

DOI: 10.1179/imr.1992.37.1.1

Google Scholar

[2] H. Jones, Rapid Solidification of Metals and Alloys. London: The Institution of Metallurgists, (1982).

Google Scholar

[3] H. H. Liebermann, Rapid Solidified Alloys, New York: Marcel Dekker, (1993).

Google Scholar

[4] F. J. Dom, Meltspun Aluminium Successful in Racing Piston, Aluminium, vol. 70, pp.575-578, (1994).

Google Scholar

[5] M. A. Otooni, Elements of Rapid Solidification: Fundamentals and Applications, Berlin: Springer, (1998).

Google Scholar

[6] Mukherjef. Sp, V. V. Rao, and R. Kumar, Powder Metallurgical Processing of Rapidly Solidified Al-Si and Al-Zn-Mg Alloys, Transaction of the PMAI, vol. 6, pp.19-23, (1979).

Google Scholar

[7] I. Ohnaka, State of the Art of Research and Development in Rapid Solidification Technologies in Japan, Transactions ISIJ, vol. 27, pp.919-928, (1987).

DOI: 10.2355/isijinternational1966.27.919

Google Scholar

[8] S. J. Hong, S. Patil, C. K. Rhee, and S. Seal, Consolidation and Mechanical Properties of Near-Net-Shape Al-21wt. %Si Component Fabricated by Plasma Spray Forming, Solid State Phenomena, vol. 119, pp.183-186, (2007).

DOI: 10.4028/www.scientific.net/ssp.119.183

Google Scholar

[9] I. Alfonso, C. Maldonado, G. Gonzalez, A. Medina, and L. Beriar, HRTEM Characterization of Melt-Spun Al-Si-Cu-Mg Alloys Solidified At Different Rates, Advances in Technology of Materials and Materials Processing Journal, vol. 8, pp.196-203, (2006).

Google Scholar

[10] R. Mehrabian, Rapid Solidification, International Metals Reviews, vol. 27, pp.185-208, (1982).

DOI: 10.1179/imr.1982.27.1.185

Google Scholar

[11] H. Jones, A Perspective on the Development of Rapid Solidification and Nonequilibrium Processing and its Future, Materials Science and Engineering A, vol. 304-306, pp.11-19, (2001).

DOI: 10.1016/s0921-5093(00)01552-5

Google Scholar

[12] H. Jones, The Status of Rapid Solidification of Alloys in Research and Application , Journal of Materials Science vol. 19, pp.1043-1076, (1984).

Google Scholar

[13] B. H. Kear, Cutting Edge Tecnology, Washington, D.C.: The National Academy Press, 1984, pp.86-108.

Google Scholar

[14] Y. Li, D. Zhang, W. Xia, Y. Long, and W. Zhang, Study on the Extruded Structure of Rapidly Solidified Hypereutectic, Journal of Materials Science Letters, vol. 21, pp.537-538, (2002).

Google Scholar

[15] B. Canter, Microstructure Development during Rapid Solidification, in Proceedings of the 22nd Riso International Symposium on Materials Science: Science of Metastable and Nanocrystalline Alloys Structure, Properties and Modelling Denmark, 2001, pp.483-492.

Google Scholar

[16] A. Bendijk, R. Delhez, L. Katgerman, T. Keijser, E. Mittemeijer, and N. Pers, Characterization of Al-Si-Alloys Quenched from the Melt, journal of Materials Science, vol. 15, pp.2803-2810, (1980).

DOI: 10.1007/bf00550549

Google Scholar

[17] M. V. Rooyen, P. F. Colijn, T. H. Keijser, and E. J. Mittemeijer, Morphology and Mechanical Properties of Melt-Spun and Conventionally Cast Aluminium, AlMg and AlSi Alloys Before and after Hot Extrusion, Journal of Materials Science vol. 21, pp.2373-2384, (1986).

DOI: 10.1007/bf01114281

Google Scholar

[18] T. Kim, C. Lee, and B. S. Chun, Microstructure of Rapidly Solidified Al-20%Si Alloys Powders, Materials Science and Engineering, vol. A304-306, pp.617-620, (2001).

DOI: 10.1016/s0921-5093(00)01546-x

Google Scholar

[19] R. Dasgupta, Property Improvement in Al-Si Alloys through Rapid Solidification Processing, Journal of Materials Processing Technology, vol. 72, pp.380-384, (1997).

DOI: 10.1016/s0924-0136(97)00198-2

Google Scholar

[20] J. Shen, Z. Xie, Y. Gao, B. Zhou, and Q. Li, Microstructure Characteristics of a Hypereutectic Al-Si Alloy Manufactured by Rapid Solidification/Powder Metallurgy Process, Journal of Materials Science Letters, vol. 20, pp.1513-1515, (2001).

Google Scholar

[21] J. Kaneko, Y. Kawaguchi, and M. Sugamata, Effect of Rapid Solidification on the Structures and Mechanical Properties of AlSi Based Casting Alloys, ICAA-6: 6 The International Conference on Aluminium Alloys, Toyohashi, Japan Published in Aluminum Alloys, vol. 3, pp.1799-1804, (1998).

Google Scholar

[22] Y. Birol, Microstructural Evolution During Annealing of a Rapidly Solidified Al-12Si Alloy, Journal of Alloys and Compounds, vol. 388, pp.188-197, (2006).

DOI: 10.1016/j.jallcom.2006.08.068

Google Scholar

[23] O. Uzun, T. Karaaslan, M. Gogebakan, and M. Keskin, Hardness and Microstructural Characteristics of Rapidly Solidified Al-8-16 wt. % Alloys, Journal of Alloys and Compounds, vol. 376, pp.149-157, (2004).

DOI: 10.1016/j.jallcom.2004.01.017

Google Scholar

[24] O. Uzun, T. Karaaslan, and M. Keskin, Hardness Evaluation of Al-12Si-0. 5Sb Melt Spun Ribbons, Journal of Alloys and Compounds, vol. 358, pp.104-111, (2003).

DOI: 10.1016/s0925-8388(03)00070-7

Google Scholar

[25] A. J. Moffat, S. Barnes, B. G. Mellor, and P. A. S. Reed, The Effect of Silicon Content on Long Crack Fatigue Behaviour of Aluminium Silicon Piston Alloys At Elevated Tmperature, International Journal of Fatigue, vol. 27, pp.1564-1570, (2005).

DOI: 10.1016/j.ijfatigue.2005.06.023

Google Scholar

[26] O. Uzun, T. Karaaslan, and M. Keskin, Production and Structure of Rapidly Solidified Al-Si Alloys, Turk Journal of Physics, vol. 25, pp.455-466, (2001).

Google Scholar

[27] J. H. Shih, J. Y. Wu, and J. Lavernia, Coarsening Behaviour of Primary Si in Melt-Spun Al-22 wt. %Si, Scripta Metallurgica et Materialia, vol. 29, pp.31-36, (1993).

DOI: 10.1016/0956-716x(93)90249-r

Google Scholar

[28] C. E. Mobley, A. H. Clauer, and B. A. Wilcox, Microstructure and Tensile Properties of 7075 Aluminium Compacted from Melt-Spun Ribbon, The Institute of Metals, vol. 100, pp.142-145, (1972).

Google Scholar

[29] www. rsp-technology. com.

Google Scholar