A Nano-Particle Synthesis Technology Dedicated to Solar Cells Applications

Article Preview

Abstract:

Silver nanoparticles have been prepared using a “terminated gas condensation” technique. An unprecedented control of 5-6 nm-size nanoparticles with well defined shape and variable surface densities has been achieved. The technology is shown to permit independent control of both, plasmon resonance intensity and frequency position. On the basis of optical measurements, a smart tuning of plasmon resonance intensity with particle density is indeed demonstrated. Moreover, the embedding of NPs in different surrounding medium enables to control the resonance wavelength as experimentally demonstrated and theoretically confirmed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-118

Citation:

Online since:

August 2011

Export:

Price:

[1] P. M Tomchuk, N. I Grigorchuk, Phys. Rev. B, 73 (2006) 155423.

Google Scholar

[2] J. R Cole , N. H Halas, Appl. Phys. Lett., 89 (2006) 153120.

Google Scholar

[3] D. Derkacs, S. H Lim, P. Matheu, W. Mar, and E. T Yu, Appl. Phys. Lett., 89 (2006) 093103.

Google Scholar

[4] R. Gupta, M. J Dyer and W. A Weimer, J. Appl. Phys., 92 (2002) 5264.

Google Scholar

[5] C. Wen, K. Ishikawa, M. Kishima and K. Yamada, Solar Energy Materials & Solar Cells, 61 (2000) 339.

Google Scholar

[6] S. Pillai, K. R Catchpole, T. Trupke and M. A Green, J. Appl. Phys., 101 (2007) 093105.

Google Scholar

[7] A.H. Kean A H, L. Allers, NSTI Nanotech Conf. Proc., Boston, May 2006.

Google Scholar

[8] E. Quesnel, E. Pauliac Vaujour and V. Muffato, J. Appl. Phys., 107 (2010) 054309.

Google Scholar

[9] S. Ino, J. Phys. Soc., 27 (1969) 941.

Google Scholar

[10] P. A Buffat, M. Flüeli, R. Spycher, P. Stadelmann and J. P Borel, Faraday Discuss., 92 (1991) 173.

DOI: 10.1039/fd9919200173

Google Scholar

[11] J. A Ascencio, C. Gutiérrez-Wing, M. E Espinosa, M. Martin, S. Tehuacanero, C. Zorilla, M. José-Yacaman, Surf. Sci., 396 (1998) 349.

Google Scholar

[12] L.D Marks, Rep. Prog. Phys., 57 (1994) 603.

Google Scholar

[13] H. Hofmeister, Cryst. Res. Techn., 33 (1998) 3.

Google Scholar

[14] M. A Garcia-Pinilla, D. Ferrer, S. Mejia-Rosales and E. Pérez-Tijerina, Nanoscale Res. Lett., 4 (2009) 896.

Google Scholar

[15] E. Hao and G.C Schatza, J. Chem. Phys., 120 (2004) 357.

Google Scholar

[16] S. Pillai, K. R Catchpole, T. Trupke and M. A Green, J. Appl. Phys., 101 (2007) 093105/1-093105/8.

Google Scholar

[17] K.R Catchpole , A. Polman, Optics express, 16 (2008) 21793.

Google Scholar

[18] G. Tayeb, Appl. Comput. Electromagnetic Soc. J, 9 (1994) 90.

Google Scholar

[19] Ch. Hafner, Artech House Books, Boston, 1990.

Google Scholar

[20] R. Najjar et al., Proc 45th Int. conf. on microelectonics, devices and materials, Slovenia, 2009, p.281.

Google Scholar

[21] P. Gay-Balmaz, O. J F Martin , Optics Communications 184 (2000) 37.

Google Scholar

[22] P. Stoller, V. Jacobsen, V. Sandoghdar, Optics Lett. 31 (2006) 2474.

Google Scholar