Probabilistic Approach to Robot Group Control

Article Preview

Abstract:

The objective of this paper is to discuss the probabilistic part of the model for robot group control applied in industrial applications. The proposed model is based on well-known concepts of Ubiquitous Computing [1] and enables contextual perception of a working environment. Compared with classical industrial robots, usually preprogrammed for a limited number of operations / actions, the system based on this model can react in uncertain situations and scenarios. The model combines ontology to describe the specific domain of interest and decision–making mechanisms based on Bayesian Networks (BN) to enable the work of a single robot without human intervention by learning Behavioral Patterns (BP) of other robots in the group.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 317-319)

Pages:

742-749

Citation:

Online since:

August 2011

Export:

Price:

[1] Wikipedia, http://en.wikipedia.org/wiki/Ubiquitous_computing (March 2011.)Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[2] Mark Weiser's Home Page, http://www.ubiq.com/hypertext/weiser/UbiHome.html (March 2011).

Google Scholar

[3] Curkovic, P., Jerbic, B., Stipancic, T.: Swarm-based Approach to Path Planning Using Honey-bees Mating Algorithm and ART Neural Network. Solid state phenomena. pp.147-149 (2009).

DOI: 10.4028/www.scientific.net/ssp.147-149.74

Google Scholar

[4] Curkovic, P., Jerbic, B., Stipancic, T.: Hybridization of adaptive genetic algorithm and ART 1 neural architecture for efficient path planning of a mobile robot. Transactions of FAMENA. 32, 2, pp.11-21 (2008). [5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003)

Google Scholar

[5] Stipancic, T.; Jerbic, B.: Self – adaptable vision system; DoCEIS'10 – Doctoral Conference on Computing, Electrical and Industrial Systems, Lisabon, Portugal (2010).

Google Scholar

[6] Stipancic, T., Curkovic, P., Jerbić, B.: Robust autonomous assembly in environment with relatively high level of uncertainty. MITIP 2008, Czech Republic Bily slon, s.r.o. Press, pp.193-198 (2008).

Google Scholar

[7] Svaco, M., Sekoranja, B., JerbiC, B.: Autonomous Planning Framework for Distributed Multiagent Robotic Systems. Technological Innovation for Sustainability. Heidelberg : Springer Verlag, pp.147-154. (2011).

DOI: 10.2507/22nd.daaam.proceedings.358

Google Scholar

[8] Gruber, R., T.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing.International Journal Human-Computer Studies 43, pp.907-928 (1994).

DOI: 10.1006/ijhc.1995.1081

Google Scholar

[9] Costa, Paulo C. G.; Laskey, Kathryn B.; and Alghamdi, Ghazi (2006) Bayesian Ontologies in AI Systems. Proceedings of the Fourth Bayesian Modelling Applications Workshop, held at the Twenty Second Conference on Uncertainty in Artificial Intelligence. Cambridge, MA, USA. (2006).

Google Scholar

[10] Lemaignan, S., Siadat, A.., Dantan, J.Y., Semenenko, A.,: MASON: A Proposal For An Ontology Of Manufacturing Domain. Distributed Intelligent Systems: Collective Intelligence and Its Applications, IEEE Workshop, p.195 – 200 (2006).

DOI: 10.1109/dis.2006.48

Google Scholar

[11] Lohse, N.: Towards an ontology framework for the integrated design of modular assembly systems. PhD thesis, University of Nottingham.Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. J. Mol. Biol. 147, 195—197 (2006).

Google Scholar

[12] Rampersad, H., K., "Integrated and Simultaneous Design for Robotic Assembly". John Wiley & Sons Ltd., Chichester, ISBN 0-471-95018-1 (1994).

Google Scholar

[13] Al-Safi Y., Vyatkin V.: An Ontology-Based Reconfiguration Agent for Intelligent Mechatronic Systems. Holonic and Multi-Agent Systems for Manufacturing Lecture Notes in Computer Science, Volume 4659/2007, 114-126 (2007).

DOI: 10.1007/978-3-540-74481-8_12

Google Scholar

[14] World Wide Web Consortium (W3C), http://www.w3.org/standards/techs/owl (March 2011).

Google Scholar

[15] Baader F., Calvanese D., McGuinness D. L., Nardi D., Patel-Schneider P. F.: The Description Logic Handbook: Theory, Implementation, Applications. Cambridge University Press, Cambridge, UK, 2003, p.6.

DOI: 10.1017/cbo9780511711787

Google Scholar

[16] Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications. International Semantic Web Conference 2004, Hiroshima, Japan, pp.229-243 (2004).

DOI: 10.1007/978-3-540-30475-3_17

Google Scholar

[17] The Protégé Ontology Editor and Knowledge Acquisition System Home Page, http://protege.stanford.edu/ (April 2011).

Google Scholar

[18] Larik A.; Haider S. Efforts to Blend Ontology with Bayesian Networks: An Overview, In Proceedings of 3rd International Conference on Advanced Computer Theory and Engineering, Chendgu, China (2010).

DOI: 10.1109/icacte.2010.5579483

Google Scholar

[19] Thurn S., Burgard W., Fox D.: Probabilistic Robotics, The MIT Press (2006).

Google Scholar

[20] Wikipedia, http://en.wikipedia.org/wiki/A_priori_and_a_posteriori (March 2011).

Google Scholar