In Vitro Degradation and Biocompatibility of WE43, ZK60, and AZ91 Biodegradable Magnesium Alloys

Article Preview

Abstract:

Successful application of magnesium alloys as degradable load-bearing implants is determined by their biological performance especially degradation and corrosion behavior in the human body. Three magnesium alloys, namely WE43, ZK60, and AZ91 are investigated in this work. The in vitro degradation behavior, cytotoxicity, and genotoxicity are evaluated by corrosion tests, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and micronuclei tests, respectively. Immersion tests indicate that the ZK60 alloy has the best corrosion resistance and lowest corrosion rate in Hank’s solution, followed by AZ91 alloy and WE43 alloy in that order. The MTT results obtained from the three magnesium alloys after 7 days of immersion indicate good cellular viability. However, excessively high aluminum and magnesium concentrations have a negative influence on the genetic stability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

2008-2014

Citation:

Online since:

July 2011

Export:

Price:

[1] F. Witte, J. Fischer, J. Nellesen et al: Biomaterials Vol. 27 (2006), p.1013.

Google Scholar

[2] Z.J. Li, X.N. Gu, Y.F. Zheng: Biomaterials Vol. 29(2008), p.1329.

Google Scholar

[3] E.L. Zhang, D.S. Yin, L.P. Xu et al: Mater. Sci. Eng. C Vol. 29 (2009), p.987.

Google Scholar

[4] Y.W. Song, D.Y. Shan, R.S. Chen et al: Mater. Sci. Eng. C Vol. 29 (2009), p.1039.

Google Scholar

[5] R.C. Zeng, W. Dietzel, F. Witte et al: Adv. Biomater. Vol. 10 (2008), p. B3.

Google Scholar

[6] X.N. Gu, Y.F. Zheng, Y. Cheng et al: Biomaterials Vol.30 (2009), p.484.

Google Scholar

[7] J. Fischer, M.H. Prosenc, M. Wolff et al: Acta Biomater. Vol.(2009)

Google Scholar

[8] J. Jiang, K.F. Huo, P.K. Chu: Biomaterials Vol. 29 (2008), p.544.

Google Scholar

[9] M. Fenech, A.A. Morley: Mutat Res-Rev Mutat Res Vol. 161(1986), p.193.

Google Scholar

[10] R.J. Albertini, D. Anderson, G.R. Douglas et al: Mutat. Res.-Rev. Mutat Res Vol. 463(2000), p.111.

Google Scholar

[11] Y.C. Xin, C.L. Liu, P.K. Chu: J. Mater. Res. Vol. 22(2007), p.2004.

Google Scholar

[12] L.P. Xu, E.L. Zhang, D.S. Yin et al, J. Mater. Sci.: Mater. Med. Vol. 19 (2008), p.1017.

Google Scholar

[13] G. Ballerini, U. Bardi, G. Ceraolo: Corr. Sci. Vol. 47 (2005), p.2173.

Google Scholar

[14] G.G. Perrault, in: A.J. Bard (Ed.): Encyclopedia of Electrochemistry of the Elements, Vol VIII, Marcel Dekker, New York, 1978.

Google Scholar

[15] R. Arrabal, E. Matykina, F. Viejo: Cor. Sci. Vol. 50 (2008), p.1744.

Google Scholar

[16] G.L. Song, A. Atrens: Adv. Eng. Mater. Vol. 1 (1999), p.11.

Google Scholar

[17] J.C. Wataha, C.T. Hanks, R.G. Craig: J. Biomed. Mater. Res. Vol. 26 (1992), p.1297.

Google Scholar

[18] A. Yamamoto, R. Honma, M. Sumita: Mater. Res. Vol. 39 (1998), p.331.

Google Scholar

[19] J.W.G. Van Putten, H.J.M. Groea, K. Smid et al: Cancer. Res. Vol. 61 (2001), p.1585.

Google Scholar

[20] K.K. Khanna, S.P. Jackson: Nat. Genet. Vol. 27 (2001), p.247.

Google Scholar