Precipitates in Biomedical Co-Cr-Mo-C-Si-Mn Alloys

Article Preview

Abstract:

The phase and dissolution behavior of precipitates in biomedical ASTM F75 Co-Cr-Mo-C-Si-Mn alloys were investigated. Alloys of five different compositions, Co-28Cr-6Mo-0.25C-1Si, Co-28Cr-6Mo-0.25C-1Mn, Co-28Cr-6Mo-0.25C-1Si-1Mn, Co-28Cr-6Mo-0.15C-1Si, and Co-28Cr-6Mo-0.35C-1Si, were heat-treated from 1448 to 1548 K. The precipitates observed in the as-cast and heat-treated alloys were carbides (M23C6 type, h-phase, and p-phase) and an intermetallic compound (c-phase). The main precipitates observed after heat treatment at high temperatures such as 1548 K were p-phase and M23C6 type carbide. At these high temperatures, two types of starlike precipitates—dense and stripe-patterned—were observed. The starlike-dense precipitate was the p-phase, and the starlike precipitate with a stripe pattern was identified as the M23C6 type carbide and metallic fcc g-phase. In the alloys heat-treated at 1448 to 1498 K, blocky-dense M23C6 type carbide was primarily observed. c-phase was detected in the Co-28Cr-6Mo-0.15C-1Si alloy under as-cast condition and after heat treatment at 1448–1523 K for a short holding time. The addition of Si seemed to increase the holding time for complete precipitate dissolution because of the effects of Si on the promotion of p-phase formation at high temperatures and the increased carbon activity in the metallic matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-58

Citation:

Online since:

July 2011

Export:

Price:

[1] C.S. Venable and W.G. Stuck: Am. J. Surg. Vol. 51 (1941), p.757.

Google Scholar

[2] F.R. Morral: J. Mater. Vol. (1966), p.384.

Google Scholar

[3] L.J. Peterson, R.V. McKinney Jr, B.M. Pennel, J.J. Klawitter and A.M. Weinstein: J. Dent. Res. Vol. 59 (1980), p.99.

Google Scholar

[4] P.C. Noble: Met. Forum Vol. 6 (1983), p.59.

Google Scholar

[5] A. Chiba, S-H. Lee, H. Matsumoto and M. Nakamura: Mat. Sci. Eng. A Vol. 513–514 (2009), p.286.

Google Scholar

[6] A.J.T. Clemow and B.L. Daniell: J. Biomed. Mater. Res. Vol. 13 (1979), p.265.

Google Scholar

[7] T. Kilner, R.M. Pilliar, G.C. Weatherly and C. Allibert: J. Biomed. Mater. Res. Vol. 16 (1982), p.63.

Google Scholar

[8] H. S. Dobbs and J. L. M. Robertson: J. Mater. Sci. Vol. 18 (1983), p.391.

Google Scholar

[9] M. Caudillo, M. Herrera-Trejo, M. R. Castro, E. Ramírez, C. R. González and J. I. Juárez: J. Biomed. Mater. Res. Vol. 59 (2002), p.378.

Google Scholar

[10] H. Mancha, E. Carranza, J.I. Escalante, G. Mendoza, M. Méndez, F. Cepeda and E. Valdés: Metall. Mater. Trans. A Vol. 32A (2001), p.979.

Google Scholar

[11] M. Herrera, A. Espinoza, J. Méndez, M. Castro, J. López, and J. Rendón: J. Mater. Sci.: Mater. Med. (2005), Vol. 16, p.607.

Google Scholar

[12] S. Mineta, S. Namba, T. Yoneda, K. Ueda, and T. Narushima: Metall. Mater. Trans. A Vol. 41 (2010), p.2129.

Google Scholar

[13] Alfirano, S. Mineta, S. Namba, T. Yoneda, K. Ueda, and T. Narushima: Metall. Mater. Trans. A, in press. DOI: 10. 1007/s11661-011-0604-4.

Google Scholar

[14] JCPDS card no. 26-0428.

Google Scholar

[15] M. Kikuchi, S. Wakita, and R. Tanaka: Trans. ISIJ Vol. 13 (1973), p.226.

Google Scholar

[16] J. Jeciejewicz: J. Less-Common Metals Vol. 7 (1964), p.318.

Google Scholar

[17] A.C. Fraker and H.H. Stadelmaier: Trans. Metal. Soc. AIME Vol. 245 (1969), p.847.

Google Scholar

[18] JCPDS card no. 33-0395.

Google Scholar

[19] M.C. Simmonds, R.C. Newman, S. Fujimoto, and J.S. Colligon: Thin Solid Films Vol. 279 (1996), p.4.

Google Scholar

[20] J. S. Kasper: Acta. Metall. Vol. 2 (1954), p.456.

Google Scholar

[21] A. Proult and P. Donnadieu: Philo. Mag. Lett. Vol. 72 (1995), p.337.

Google Scholar

[22] A. Redjaïmia, A. Proult, P. Donnadieu, and J.P. Morniroli: J. Mater. Sci. Vol. 39 (2004), p.2371.

Google Scholar

[23] J. -M. Joubert and M. Phejar: Prog. Mater. Sci. Vol. 54 (2009), p.945.

Google Scholar

[24] K.W. Andrews: Nature Vol. 164 (1949), p.1015.

Google Scholar

[25] Alfirano, S. Mineta, S. Namba, T. Yoneda, K. Ueda, and T. Narushima, to be submitted.

Google Scholar

[26] H.J. Goldschmidt: Metallurgia Vol. 56 (1957), p.17.

Google Scholar

[27] P. Ettmayer and H. Seifahrt: Monatsh. Chem. Vol. 100 (1969), p.616.

Google Scholar

[28] T. -H. Lee, S. -J. Kim, and Y. -C. Jung: Metall. Mater. Trans. A Vol. 31A (2000), p.1713.

Google Scholar

[29] B. Weiss and R. Stickler: Metall. Trans. Vol. 3 (1972), p.851.

Google Scholar

[30] L.E. Ramírez, M. Castro, M. Méndez, J. Lacaze, M. Herrera and G. Lesoult: Scr. Mater. Vol. 47 (2002), p.811.

Google Scholar

[31] I. Calliari, G. Straffelini and E. Ramous: Mater. Sci. Tech. Vol. 26 (2010), p.81.

Google Scholar

[32] B.C. De Cooman: Curr. Opin. Solid State Mater. Sci. Vol. 8 (2004), p.285.

Google Scholar

[33] S. Mineta, Alfirano, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Mat. Sci. Forum Vol. 654–656 (2010), p.2176.

DOI: 10.4028/www.scientific.net/msf.654-656.2176

Google Scholar