Effect of Magnetite Nanoparticles Doped Glass with Enhanced Verdet Constant for Magnetic Optical Current Transducer Applications

Article Preview

Abstract:

. Fe3O4 nanoparticles were synthesized and doped into two glass systems (Na2O-B2O3 glass and PbO-Bi2O3-B2O3-GeO2 glasses) at low concentrations using traditional glass melting method. The formation of Fe3O4 nanoparticles was obtained through coprecipitation of Fe(II) and Fe(III) in alkaline media.The size of the Fe3O4 nanoparticles was observed to be around 15 nm. The structure and properties of doped glasses were studied by X-ray diffraction (XRD), scanning electric microscope (SEM), UV-VIS spectray, FT-IR spectray analysis and Faraday rotation test. Compared to the host glass, Fe3O4 nanoparticles doped glasses shown enhanced Faraday Effect in term of Verdet constant and will have potential application in magneto-optical devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 271-273)

Pages:

13-18

Citation:

Online since:

July 2011

Export:

Price:

[1] U. Holm, H. Sohlstrom and K. svantesson: Sens. &. Actuat, Vol. 46 (1995), p.487.

Google Scholar

[2] B.V.R. Chowdari, H. Zhou, Solid State Ionics, Vol. 90(1996), p.151.

Google Scholar

[3] N.F. Borelli, J. Chem. Phys. Vol. 41(1964), p.3289.

Google Scholar

[4] A. Potseluyko, I. Edelman, A. Malakhovskii, Microelectronic engineering Vol. 698(2003), p.216.

Google Scholar

[5] Diwekar, M.; Kamaev, V.; Shi, J.; Vardeny, Z. V, Appl. Phys. Lett. Vol. 84, (2004), p.3112.

Google Scholar

[6] Kahl, S.; Grishin, A. M. Appl. Phys. Lett. Vol. 84 (2004), p.1438.

Google Scholar

[7] E.M. Chudnovsky, L. Gunther, Phys. Rev. letter Vol. 60 (1988), p.661.

Google Scholar

[8] A.E. Berkowitz, J.R. Mitchell, M.J. Carey, Phys. Rev. Lett Vol. 68 (1992), p.3745.

Google Scholar

[9] M. Okada, S. Katayama and K. Tominaga, J. Appl. Phys., Vol. 69 (1991), p.3566.

Google Scholar

[10] CHEN Q.; Ferraris M; Milanese D; J. OF NON-CRYSTALLINE SOLIDS, Vol. 324 (2003), p.12.

Google Scholar

[11] CHEN Q.; Ferraris M; Milanese, J. OF NON-CRYSTALLINE SOLIDS, Vol. 324 (2003), p.1.

Google Scholar

[12] Qiuping Chen, Wanlin, Qiuling Chen, Advanced Materials Research, Vol. 213, (2011) p.330.

Google Scholar

[13] Pan Zd, Steven H. Morgan, J. Non-Cryst. Solids, Vol . 210 (1997), p.130.

Google Scholar

[14] V. I., Elena K., Functional properties of nanostructured materials, (2006) p.173.

Google Scholar

[15] E.P. Golli, A. Ingram, journal of physics: conference series Vol. 79(2007), p.12.

Google Scholar

[16] S. Woltz, R. Hiergeist, P. Gornert, J. of magnetism and Magnetic materials Vol. 298(2006), p.7.

Google Scholar

[17] S. Yang, Ji-Hyun Yi, Soonil Son, APPLIED PHYSICS LETTERS, Vol . 83(2003), p.8.

Google Scholar

[18] Guang-Hai L, W.Y. Cheng, Z. Li-De, Chin. Phys. Vol . 10(2001), p.148.

Google Scholar

[19] Chen W, J. Zhang, Scripta Materialia, Vol. 49(2003), p.321.

Google Scholar

[20] P. Dallas, Vasilios Georgakilas, Nanotechnology Vol. 17 (2006), p. (2046).

Google Scholar

[21] B. Golding: Polymers and Resins (New York: Van Nostrand 1959).

Google Scholar