Investigation of Microholes Produced by Focused Ion Beam Micromachining

Article Preview

Abstract:

This paper discusses the microfabrication of microholes using focused ion beam and investigation of geometrical integrity of microholes. Different combination of aperture size, probe current, acceleration voltage was applied for micromachining and optimized based on taper angle. Microholes with 3.0 μm of diameter were milled according to the optimized parameter using bitmap mode. The depth range of microholes was 1.0-5.5 μm. The hole’s depth and taper angle were investigated for characterization. Each of the microholes was cross sectioned for investigation. A relationship of taper angle (θ), depth and aspect ratio were plotted. Low aspect ratio (less than 1) would give the lower taper angle and hence better integrity. Acceleration voltage of 25 kV, probe current of 41.5 pA and aperture size of 4 nm produced lower taper angle for different aspect ratio.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1346-1351

Citation:

Online since:

June 2011

Export:

Price:

[1] M.Y. Ali and Y.W. Loo, Geometrical integrity of micromold cavity sputtered by FIB using multilayer slicing approach, J. Microsystem Technol., Vol. 13 (2007), 103-107.

DOI: 10.1007/s00542-006-0254-4

Google Scholar

[2] D. Grogg, N.D.B. Ciressan, A.M. Ionescu, Focused ion beam based fabrication of micro-epectro-mechanical resonators, J. Microsystem Technol., Vol. 14 (2007), 1049-1053.

DOI: 10.1007/s00542-007-0464-4

Google Scholar

[3] S. W Youn, C. Okuyama, M. Takahashi, R. Maeda, A study on fabrication of silicon mold for polymer hot-embossing using focused ion beam milling, J. of Materials Processing Technology 20I., Vol. 20 (2008), 548-553.

DOI: 10.1016/j.jmatprotec.2007.11.180

Google Scholar

[4] S. P Thomas, S. Thomas, S. Bandyopadhyay, Mechanical, atomic force microscopy and focused ion beam studies of isotactic polystyrene/titanium dioxide composites, J. Composites Part A, Vol. 40 (2009), 36-44.

DOI: 10.1016/j.compositesa.2008.10.005

Google Scholar

[5] C.K. Malek, F.T. Hartley, J. Neogi, Fast prototyping of high-aspect ratio, high resolution X-ray masks by gas assisted focused ion beam, J. of Microsystem Technologies., Vol. 9 (2003), 409-412.

DOI: 10.1007/s00542-002-0215-5

Google Scholar

[6] S. Zaefferer, S.I. Wright, D. Raabe, Three dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructure characterization, J. Metallurgical and Materials Transactions A., Vol. 39 A (2008).

DOI: 10.1007/s11661-007-9418-9

Google Scholar

[7] T.L. Matteson, S.W. Schwarf, E.C. Houge, B.W. Kempshall, L.A. Giannuzzi, Electron backscattering diffraction investigation of focused ion beam surface, J. of Electronic Materials, Vol. 31, No. 1, (2001), 33-39.

DOI: 10.1007/s11664-002-0169-5

Google Scholar

[8] H. Gerdes and H.H. Gatzen, Focused ion beam core drilling for stress detection in thin-films, Microsyst. Technol., 2008, DOI 10. 1007/s00542-008-0649-5.

DOI: 10.1007/s00542-008-0649-5

Google Scholar

[9] D. P Adams, M.J. Visile, V.C. Hodges, N. Patterson, Focused ion beam fabrication of nanopores in metal and dielectric membranes, Microsc Microanal, Vol 13 (Suppl 2) (2007), 1512-1513.

DOI: 10.1017/s1431927607078038

Google Scholar

[10] A.J. Kubis, G.J. Shiflet, D.N. Dunn, R. Hull, Focused ion beam tomographic, J. of Metallurgical and Materials Transactions A, Vol. 35 A (2004), 1935-(1943).

DOI: 10.1007/s11661-004-0142-4

Google Scholar

[11] J. Lian., The focused-ion-beam microscope-More than a precision milling, JOM: Overview of Elctron Micrscopy, (2006), 27-31.

DOI: 10.1007/s11837-006-0156-z

Google Scholar

[12] L.A. Giannuzzi, D. Phifer, N.J. Giannuzzi, M.J. Capuano, Two-dimensional and 3-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy, J. Oral Maxillofac. Surg., (2007), 737-747.

DOI: 10.1016/j.joms.2006.10.025

Google Scholar

[13] C.C. Ooi, K.H. Siek, K.S. Sim, Applications of focused ion beam system as a defect localization and root cause analysis tool, Proc. Of 8th IPFA, Singapore, (2001), 112-116.

DOI: 10.1109/ipfa.2001.941466

Google Scholar

[14] Y. Fu and N.K.A. Bryan, Fabrication of three-dimensional microstructures by two-dimensional slice by slice approaching via focused ion beam milling, J. of Vac. Sci. Technol. B., Vol. 22, No. 4 (2004), 1672-1678.

DOI: 10.1116/1.1761460

Google Scholar

[15] A. Uranga, F. Ay, J.D.B. Bradley, R.M.D. Ridder, K. Worhoff, M. Pollnau, Focused ion beam nano-structuring of photonic Bragg gratings in Al2O3 waveguides, Proc. Symposium IEEE/LEOS Benelux Chapter, Brussels, (2007), 247-250.

DOI: 10.1364/cleo.2010.cmq4

Google Scholar

[16] M.Y. Ali, N.P. Hung, B.K.A. Ngoi, S. Yuan, Sidewall surface roughness of sputtered silicon II: Model verification, IoM Communications Ltd, Institute of Materials, Minerals and Mining, (2003), 104-108.

DOI: 10.1179/026708403225002522

Google Scholar

[17] M.Y. Ali, N.P. Hung, B.K.A. Ngoi, S. Yuan, Sidewall surface roughness of sputtered silicon I: Surface modelling, IoM Communications Ltd, Institute of Materials, Minerals and Mining, (2003), 97-103.

DOI: 10.1179/026708403225002513

Google Scholar

[18] N.P. Hung, Y.Q. Fu, M.Y. Ali, Focused ion beam machining of silicon, J. of Materials Processing Technology, Vol. 127 (2002), 256-260.

DOI: 10.1016/s0924-0136(02)00153-x

Google Scholar

[19] Y.Q. Fu, N.K.A. Bryan, O.N. Shing, N.P. Hung, Influence of redeposition effect for focused ion beam 3D micromachining in silicon, Int. J. Adv. Manuf. Technol., Vol 16 (2000), 1049-1053.

DOI: 10.1007/s001700070005

Google Scholar