Microstructure in Pressureless-Sintered Iron-Containing Hydroxyapatite/Titanium Composites

Article Preview

Abstract:

Pure hydroxyapatite (HA) is brittle and it cannot be directly used for the load-bearing biomedical applications. Aim of this paper was to present a new iron-containing hydroxyapatite/titanium composites synthesized via pressureless sintering at a relatively low temperature of 1000°C using nano-sized HA powders and Ti-33%Fe mixed powders. The microstructure and composition of the new type composites were evaluated. The results showed that the uniformly distributed reinforcing particles had a unique and favorable core/shell microstructure after sintering that consisted of outer titanium and inner iron. The mechanism for the formation of the core/shell structure was discussed. The addition of iron reduced the decomposition rate of HA and the interaction between HA and titanium.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

1582-1587

Citation:

Online since:

November 2010

Export:

Price:

[1] M.S. Lavine: Science Vol. 311 (2006), p.16.

Google Scholar

[2] E.S. Ahn, N.J. Gleason and J.Y. Ying: J. Am. Ceram. Soc. Vol. 88 (2005), p.3374.

Google Scholar

[3] Z.J. Shen, E. Adolfsson, M. Nygren, L. Gao, H. Kawaoka and K. Niihara: Adv. Mater. Vol. 13 (2001), p.214.

Google Scholar

[4] G.B. Wei and P.X. Ma: Biomaterials Vol. 25 (2004), p.4749.

Google Scholar

[5] E.A. Magnissalis, S. Zinelis, T. Karachalios and G. Hartofilakidis: J. Biomed. Mater. Res. B Vol. 66 (2003), p.299.

Google Scholar

[6] S.H. Teoh: Inter. J. Fatigue Vol. 22 (2000), p.825.

Google Scholar

[7] R.O. Ritchie, J.J. Kruzic, C.L. Muhlstein, R.K. Nalla and E.A. Stach: Inter. J. Fract. Vol. 128 (2004), p.1.

Google Scholar

[8] S. Wiersma, F. Dolan and D. Taylor: Bio-Medical Mater. Eng. Vol. 16 (2006), p.137.

Google Scholar

[9] S. Yue, R.M. Pilliar and G.C. Weatherly: J. Biomed. Mater. Res. Vol. 18 (1984), p.1043.

Google Scholar

[10] C.Q. Ning and Y. Zhou: Biomaterials Vol. 23 (2002), p.2909.

Google Scholar

[11] L.S. Ozyegin, O. Gunduz, F.N. Oktar, B. Oz, S. Agathopoulos, S. Salman and L. Ovecoglu: Key Eng. Mater. Vol. 309-311 (2006), p.359.

DOI: 10.4028/www.scientific.net/kem.309-311.359

Google Scholar

[12] P.E. Wang and T.K. Chaki: J. Mater. Sci. Mater. Med. Vol. 4 (1993), p.150.

Google Scholar

[13] M. Wei, A.J. Ruys, B.K. Milthorpe and C.C. Sorrell: J. Mater. Sci. Mater. Med. Vol. 16 (2005), p.319.

Google Scholar

[14] T. Fujita, A. Ogawa, C. Ouchi and H. Tajima: Mater. Sci. Eng. A Vol. 213 (1996), p.148.

Google Scholar

[15] W. Wei, Y. Liu, K. Zhou and B. Huang: Powder Metall. Vol. 46 (2003), p.246.

Google Scholar

[16] A.S. Zhang and C.A. Enns: J. Biol. Chem. Vol. 284 (2009), p.711.

Google Scholar

[17] R.W. Bogard and J.D. Oliver: Appl. Environ. Microbiol. Vol. 73 (2007), p.7501.

Google Scholar

[18] M. Okazaki, J. Takahashi and H. Kimura: J. Biomed. Mater. Res. Vol. 20 (1986), p.879.

Google Scholar

[19] S.W.K. Kweh, K.A. Khor, P. Cheang: J. Mater. Process. Tech. Vol. 89-90 (1999), p.373.

Google Scholar

[20] B.K. Moon, K. Kamada, N. Enomoto, J. Hojo and S.W. Lee: Mater. Sci. Forum Vol. 561-565 (2007), p.613.

Google Scholar

[21] J. Weng, X.G. Liu, X.D. Zhang and X.Y. Ji: J. Mater. Sci. Lett. Vol. 13 (1994), p.159.

Google Scholar