Effect of Severe Plastic Deformation on the Structure and Magnetic Behaviour of an Fe-Mn-Si Shape Memory Alloy

Article Preview

Abstract:

This work focuses on the relation between severe plastic deformation process via HSHPT and magnetic properties of an Fe–Mn–Si-Cr shape memory alloy. High speed high pressure torsion (HSHPT) was applied on cast state of alloy. Microstructure evolution of severe plastic deformed iron based alloy subjected to different deformation degree were investigated. The microstructure and phase compositions of alloy were characterized using optical microscopy, scanning electron microscopy and transmission electron microscopy. The magnetic properties are discussed on the basis of the severe plastic deformation process and the underlying martensitic transformation. Thermomagnetic curves, between 150 K and 390 K and magnetic hysteresis loops at 300 K temperatures were measured. The thermo-resistivity measurements were done by standard four-probe. The magnetic properties are interpreted and correlated with microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

240-246

Citation:

Online since:

February 2017

Export:

Price:

* - Corresponding Author

[1] López GA, López-Ferreño I, Kilmametov AR, Breczewski T, Straumal BB, Baretzky B, et al. Severe Plastic Deformation on Powder Metallurgy Cu–Al–Ni Shape Memory Alloys. Mater Today Proc 2015; 2: S747–50. doi: 10. 1016/j. matpr. 2015. 07. 390.

DOI: 10.1016/j.matpr.2015.07.390

Google Scholar

[2] Kim SM, Arockiakumar R, Park JK. Effect of ECAE-processing on the thermo-mechanical behavior of Ti34wt. %Nb0. 14wt. %O shape memory alloy. Mater Sci Eng A 2012; 546: 53–8. doi: 10. 1016/j. msea. 2012. 03. 023.

DOI: 10.1016/j.msea.2012.03.023

Google Scholar

[3] Glezer AM, Sundeev R V. General view of severe plastic deformation in solid state. Mater Lett 2015; 139: 455–7. doi: 10. 1016/j. matlet. 2014. 10. 052.

DOI: 10.1016/j.matlet.2014.10.052

Google Scholar

[4] Gurǎu G, Gurǎu C, Potecaşu O, Alexandru P, Bujoreanu LG. Novel high-speed high pressure torsion technology for obtaining Fe-Mn-Si-Cr shape memory alloy active elements. J Mater Eng Perform 2014; 23: 2396–402. doi: 10. 1007/s11665-014-1060-2.

DOI: 10.1007/s11665-014-1060-2

Google Scholar

[5] Koohdar HR, Nili-Ahmadabadi M, Habibi-Parsa M, Jafarian HR, Ghasemi-Nanesa H, Shirazi H. Observation of pseudoelasticity in a cold rolled Fe–Ni–Mn martensitic steel. Mater Sci Eng A 2016; 658: 86–90. doi: 10. 1016/j. msea. 2016. 01. 113.

DOI: 10.1016/j.msea.2016.01.113

Google Scholar

[6] Zhang W, Wen Y-H, Li N, Huang S-K. Remarkable improvement of recovery stress of Fe–Mn–Si shape memory alloy fabricated by equal channel angular pressing. Mater Sci Eng A 2007; 454-455: 19–23. doi: 10. 1016/j. msea. 2006. 10. 101.

DOI: 10.1016/j.msea.2006.10.101

Google Scholar

[7] Cladera A, Weber B, Leinenbach C, Czaderski C, Shahverdi M, Motavalli M. Iron-based shape memory alloys for civil engineering structures: An overview. Constr Build Mater 2014; 63: 281–93. doi: 10. 1016/j. conbuildmat. 2014. 04. 032.

DOI: 10.1016/j.conbuildmat.2014.04.032

Google Scholar

[8] Druker AV, Fuster V, Isola L, Bolmaro R, Malarría J. Effect of the Manufacturing Process on the Texture and the Fraction of Stress-induced Martensite in an Fe-Mn-Si-Cr-Ni Shape Memory Alloy. Procedia Mater Sci 2015; 9: 187–94. doi: 10. 1016/j. mspro. 2015. 04. 024.

DOI: 10.1016/j.mspro.2015.04.024

Google Scholar

[9] Delyagin NN, Erzinkyan AL, Parfenova VP, Rozantsev IN. Mössbauer studies of the states of Fe atoms in the antiferromagnetic Fe–Mn Invar alloys. J Alloys Compd 2013; 573: 11–4. doi: 10. 1016/j. jallcom. 2013. 03. 273.

DOI: 10.1016/j.jallcom.2013.03.273

Google Scholar

[10] Gebhardt T, Music D, Ekholm M, Abrikosov IA, von Appen J, Dronskowski R, et al. Influence of chemical composition and magnetic effects on the elastic properties of fcc Fe–Mn alloys. Acta Mater 2011; 59: 1493–501. doi: 10. 1016/j. actamat. 2010. 11. 013.

DOI: 10.1016/j.actamat.2010.11.013

Google Scholar

[11] Valeanu M, Filoti G, Kuncser V, Tolea F, Popescu B, Galatanu A, et al. Shape memory and associated properties in Fe–Mn–Si-based ribbons produced by melt-spinning. J Magn Magn Mater 2008; 320: e164–7. doi: 10. 1016/j. jmmm. 2008. 02. 105.

DOI: 10.1016/j.jmmm.2008.02.105

Google Scholar

[12] Druker A, Baruj A, Malarría J. Effect of rolling conditions on the structure and shape memory properties of Fe–Mn–Si alloys. Mater Charact 2010; 61: 603–12. doi: 10. 1016/j. matchar. 2010. 03. 005.

DOI: 10.1016/j.matchar.2010.03.005

Google Scholar

[13] Min X, Sawaguchi T, Zhang X, Tsuzaki K. Reasons for incomplete shape recovery in polycrystalline Fe–Mn–Si shape memory alloys. Scr Mater 2012; 67: 37–40. doi: 10. 1016/j. scriptamat. 2012. 03. 015.

DOI: 10.1016/j.scriptamat.2012.03.015

Google Scholar

[14] Nikulin I, Sawaguchi T, Ogawa K, Tsuzaki K. Effect of γ to ε martensitic transformation on low-cycle fatigue behaviour and fatigue microstructure of Fe–15Mn–10Cr–8Ni–xSi austenitic alloys. Acta Mater 2016; 105: 207–18. doi: 10. 1016/j. actamat. 2015. 12. 002.

DOI: 10.1016/j.actamat.2015.12.002

Google Scholar

[15] Fuster V, Druker AV, Baruj A, Malarría J, Bolmaro R. Characterization of phases in an Fe–Mn–Si–Cr–Ni shape memory alloy processed by different thermomechanical methods. Mater Charact 2015; 109: 128–37. doi: 10. 1016/j. matchar. 2015. 09. 026.

DOI: 10.1016/j.matchar.2015.09.026

Google Scholar

[16] Saito T, Kapusta C, Takasaki A. Synthesis and characterization of Fe–Mn–Si shape memory alloy by mechanical alloying and subsequent sintering. Mater Sci Eng A 2014; 592: 88–94. doi: 10. 1016/j. msea. 2013. 10. 097.

DOI: 10.1016/j.msea.2013.10.097

Google Scholar

[17] Sarı U, Kırındı T, Yüksel M, Ağan S. Influence of Mo and Co on the magnetic properties and martensitic transformation characteristics of a Fe-Mn alloy. J Alloys Compd 2009; 476: 160–3. doi: 10. 1016/j. jallcom. 2008. 09. 047.

DOI: 10.1016/j.jallcom.2008.09.047

Google Scholar

[18] Andersson M, Forsberg A, Agren J. Ecomaterials. Elsevier; 1994. doi: 10. 1016/B978-1-4832-8381-4. 50227-4.

Google Scholar