DFT Investigations of Ti, V Doped ZnO Based Diluted Magnetic Semiconductors

Article Preview

Abstract:

The injection impurity element into ZnO has added new dimension to its versatile applications particularly in spintronics and optoelectronics. In this work, we are reporting effect of non magnetic Ti, and magnetic V impurities in ZnO. The substitution of impurity atoms have been done in ground state wurtzite (WZ) and meta stable zinc-blende (ZB) structure. Our investigations have revealed a small difference in WZ and ZB geometries of contaminated ZnO reflecting on the possibility of their experimental fabrication. Spin polarized electronic structures resembled nonmagnetic nature of Ti:ZnO in WZ and magnetic nature in ZB geometry. Similarly introduction of V in to ZnO induced magnetization in ZnO in both WZ and ZB geometry. For these investigations, we have adapted DFT approach using FP-L(APW+lo) method implemented in WIEN2k code.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

502-507

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] B. Mbenkum, N. Ashkenov, M. Schubert, M. Lorenz, H. Hochmuth, D. Michel, M. Grundmann, and G. Wagner, Temperature-dependent dielectric and electro-optic properties of a ZnO/BaTiO3/ZnO heterostructure grown by pulsed-laser deposition. Applied Physics Letters, 2005. 86(9): 091904-091904-3.

DOI: 10.1063/1.1862778

Google Scholar

[2] Sharma, A. Gupta, K. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.O. Guillen, B. Johansson, and G. Gehring, Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature materials, 2003. 2(10): 673-677.

DOI: 10.1038/nmat984

Google Scholar

[3] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Magnetic properties of Mn-doped ZnO. Applied Physics Letters, 2001. 78(7): 958-960.

DOI: 10.1063/1.1348323

Google Scholar

[4] Y. Chang, D. Wang, X. Luo, X. Xu, X. Chen, L. Li, C. Chen, R. Wang, J. Xu, and D. Yu, Synthesis, optical, and magnetic properties of diluted magnetic semiconductor ZnMnO nanowires via vapor phase growth. Applied Physics Letters, 2003. 83: 4020.

DOI: 10.1063/1.1625788

Google Scholar

[5] X. Tang and K. -a. Hu, Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites. Materials Science and Engineering: B, 2007. 139(2): 119-123.

DOI: 10.1016/j.mseb.2007.01.052

Google Scholar

[6] Z.L. Wang and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006. 312(5771): 242-246.

DOI: 10.1126/science.1124005

Google Scholar

[7] C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. Kaidashev, M. Lorenz, and M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Applied Physics Letters, 2003. 83(10): 1974-(1976).

DOI: 10.1063/1.1609251

Google Scholar

[8] P. Gondoni, M. Ghidelli, F. Di Fonzo, M. Carminati, V. Russo, A.L. Bassi, and C. Casari, Structure-dependent optical and electrical transport properties of nanostructured Al-doped ZnO. Nanotechnology, 2012. 23(36): 365706.

DOI: 10.1088/0957-4484/23/36/365706

Google Scholar

[9] C. -Y. Tsay, K. -S. Fan, and C. -M. Lei, Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films. Journal of Alloys and Compounds, 2012. 512(1): 216-222.

DOI: 10.1016/j.jallcom.2011.09.066

Google Scholar

[10] J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, and J. Hou, Indium-doped zinc oxide nanobelts. Chemical Physics Letters, 2004. 387(4): 466-470.

DOI: 10.1016/j.cplett.2004.02.045

Google Scholar

[11] R. Nisha, K. Madhusoodanan, T. Vimalkumar, and K. Vijayakumar. Effect of Indium doping on the Gas sensing behavior of Zinc oxide films obtained by Chemical spray pyrolysis method. in Physics and Technology of Sensors (ISPTS), 2012 1st International Symposium on. 2012: IEEE.

DOI: 10.1109/ispts.2012.6260923

Google Scholar

[12] Z. -h. Xiong and F. -y. Jiang, First-principles study of electronic structure and ferromagnetism in Ti-doped ZnO. Journal of Physics and Chemistry of Solids, 2007. 68(8): 1500-1503.

DOI: 10.1016/j.jpcs.2007.03.020

Google Scholar

[13] Z. Yong, T. Liu, T. Uruga, H. Tanida, D. Qi, A. Rusydi, and A.T. Wee, Ti-doped ZnO Thin Films Prepared at Different Ambient Conditions: Electronic Structures and Magnetic Properties. Materials, 2010. 3(6): 3642-3653.

DOI: 10.3390/ma3063642

Google Scholar

[14] G. Gu, G. Xiang, J. Luo, H. Ren, M. Lan, D. He, and X. Zhang, Magnetism in transition-metal-doped ZnO: A first-principles study. Journal of Applied Physics, 2012. 112(2): 023913-023913-5.

DOI: 10.1063/1.4739450

Google Scholar

[15] Z. Weng, Z. Huang, and W. Lin, First-principles study of ferromagnetism in Ti-doped ZnO with oxygen vacancy. Physica B: Condensed Matter, 2012. 407(4): 743-747.

DOI: 10.1016/j.physb.2011.12.015

Google Scholar

[16] K. Sato and H. Katayama‐Yoshida, Ab initio Study on the Magnetism in ZnO‐, ZnS‐, ZnSe‐and ZnTe‐Based Diluted Magnetic Semiconductors. physica status solidi (b), 2002. 229(2): 673-680.

DOI: 10.1002/1521-3951(200201)229:2<673::aid-pssb673>3.0.co;2-7

Google Scholar

[17] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, (Ga, Mn) As: A new diluted magnetic semiconductor based on GaAs. Applied Physics Letters, 1996. 69: 363.

DOI: 10.1063/1.118061

Google Scholar

[18] H. Morkoç and Ü. Özgür, ZnO‐Based Dilute Magnetic Semiconductors. Zinc Oxide: Fundamentals, Materials and Device Technology: 277-350.

DOI: 10.1002/9783527623945.ch5

Google Scholar

[19] J.K. Furdyna, Diluted magnetic semiconductors. Journal of Applied Physics, 1988. 64(4): R29-R64.

DOI: 10.1063/1.341700

Google Scholar

[20] T. Dietl, A. Haury, and Y.M. d'Aubigné, Free carrier-induced ferromagnetism in structures of diluted magnetic semiconductors. Physical Review B, 1997. 55(6) R3347.

DOI: 10.1103/physrevb.55.r3347

Google Scholar

[21] K. Sato and H. Katayama-Yoshida, Electronic structure and ferromagnetism of transition-metal-impurity-doped zinc oxide. Physica B: Condensed Matter, 2001. 308 904-907.

DOI: 10.1016/s0921-4526(01)00834-1

Google Scholar

[22] A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. -W. Ok, and T. -Y. Seong, Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers. Applied Physics Letters, 2000. 76(5): 550-552.

DOI: 10.1063/1.125851

Google Scholar

[23] S. -M. Zhou, H. -C. Gong, B. Zhang, Z. -L. Du, X. -T. Zhang, and S. -X. Wu, Synthesis and photoluminescence of a full zinc blende phase ZnO nanorod array. Nanotechnology, 2008. 19(17): 175303.

DOI: 10.1088/0957-4484/19/17/175303

Google Scholar

[24] D. J. Lee, K. -J. Kim, S. -H. Kim, J. -Y. Kwon, J. Xu, and K. -B. Kim, Atomic layer deposition of Ti-doped ZnO films with enhanced electron mobility. J. Mater. Chem. C, 2013. 1 4761-4769.

DOI: 10.1039/c3tc30469h

Google Scholar

[25] R. Sridhar, C. Manoharan, S. Ramalingam, S. Dhanapandian, and M. Bououdina, Spectroscopic study and Optical and Electrical Properties of Ti-doped ZnO Thin Films by Spray Pyrolysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 120 297–303.

DOI: 10.1016/j.saa.2013.09.149

Google Scholar

[26] Y.F. Chen, Q.G. Song, and R. Li, Electronic Structures and Magnetic Properties in Ti-Doped ZnO. Advanced Materials Research, 2013. 721: 308-311.

DOI: 10.4028/www.scientific.net/amr.721.308

Google Scholar

[27] Y. Lin, C. Hsu, S. Hung, C. Chang, and D. Wen, The structural and optoelectronic properties of Ti-doped ZnO thin films prepared by introducing a Cr buffer layer and post-annealing. Applied Surface Science, 2012. 258(24): 9891-9895.

DOI: 10.1016/j.apsusc.2012.06.046

Google Scholar

[28] J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters, 1996. 77(18): 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[29] D. Koller, F. Tran, and P. Blaha, Improving the modified Becke-Johnson exchange potential. Physical Review B, 2012. 85(15): 155109.

DOI: 10.1103/physrevb.85.155109

Google Scholar

[30] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k. An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Austria, (2001).

Google Scholar

[31] B.U. Haq, A. Afaq, R. Ahmed, and S. Naseem, Structural, electronic, and magnetic properties of Co-doped ZnO. Chinese Physics B, 2012. 21(9): 097101.

DOI: 10.1088/1674-1056/21/9/097101

Google Scholar

[32] U.H. Bakhtiar, R. Ahmed, R. Khenata, M. Ahmed, and R. Hussain, A first-principles comparative study of exchange and correlation potentials for ZnO. Materials Science in Semiconductor Processing, 2013 16(4) 1162–1169.

DOI: 10.1016/j.mssp.2012.11.012

Google Scholar

[33] B. Ul Haq, R. Ahmed, S. Goumri-Said, A. Shaari, and A. Afaq, Electronic structure engineering of ZnO with the modified Becke–Johnson exchange versus the classical correlation potential approaches. Phase Transitions, 2013. 86(12) 1167-1177.

DOI: 10.1080/01411594.2012.755183

Google Scholar

[34] B. Ul Haq, A. Afaq, R. Ahmed, and S. Naseem, a Comprehensive DFT Study of Zinc Oxide in Different Phases. International Journal of Modern Physics C, 2012. 23(06) 1250043- 1250053.

DOI: 10.1142/s012918311250043x

Google Scholar