New Polyester Nanofiltration (NF) Membrane for Humic Acid Removal

Article Preview

Abstract:

Interfacial polymerization of a thin film composite (TFC) layer on top of a miroporous support membrane or other porous substrate is one of adequate method to form nanofiltration membrane in order to remove humic acid. Ultrafiltration (UF) polyethersulfone (PES) was used as membrane base support. Reaction occurred on the surface of membrane between two phase which are triethanolamine (TEOA) and trimesoyl chloride (TMC) as aqueous solution and organic solution respectively. Membrane that produced characterized by permeability, charged solutes rejection including salt solutions (NaCl and Na2SO4) and humic acid removal. Properties of membrane can be attributed with the changes of monomer concentration and reaction time. Pure water flux Jw for membranes calculated as a function of applied pressure to membrane ΔP. Thus, flux increased linearly with operating pressure is applied to membrane where meets Hagen-Poiseuille equation and gradient of every straight line give pure water permeability data. The variation of reaction time (15, 25 and 35 min) at 8% (w/v) monomer concentrations can affect the properties of the membrane produced and decreasing water permeabilities. The rejection order of the membrane changed from 0.001 M Na2SO4 > 0.1M Na2SO4> 0.001M NaCl > 0.1M NaCl. Humic acid removal resulted almost fully rejection showed that nanofiltration membrane is one of the best methods in water treatment technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

383-388

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] R. Rautenbach., R. Albrecht. Membrane processes, Development in Chemical Engineering and Mineral Processing. 3(3-4): 1994, 236-237.

Google Scholar

[2] L.P. Raman, M. Cheryan, N. Rajagopalan, Consider nanofiltration for membrane separations, Chemical Engineering Progress. (1994), 90 (3): 68-74.

Google Scholar

[3] J. Li, Q. Jia, J. Zhu, M. Zheng, Interfacial polymerization of morphologically modified polyanaline: from hollow microspheres to nanowires. Polymer International. (2007) 57 (2): 337-341.

DOI: 10.1002/pi.2353

Google Scholar

[4] M.N. Abu Seman, M. Khayet, N. Hilal, Nanofiltration thin film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization, J. Membr. Sci 348 (2010) 109-116.

DOI: 10.1016/j.memsci.2009.10.047

Google Scholar

[5] Y.Q. Huang, C.K. C Wong, J.S. Zheng, H. Bouwman, R. Barra, B. Wahlstrom, L. Neretin, M.H. Wong, Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts, Environment International 42 (2012) 91-99.

DOI: 10.1016/j.envint.2011.04.010

Google Scholar

[6] S.R. Beverly, Bisphenol A: An endocrine disrupter with widespread exposure and multiple effects, Journal of Steroid Biochemistry & Molecular Biology, (2011) 127, 27-34.

DOI: 10.1016/j.jsbmb.2011.05.002

Google Scholar

[7] W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes-use of salt, uncharged solutes and atomic force microscope J. Membr. Sci., 126 (1997), p.91–105.

DOI: 10.1016/s0376-7388(96)00276-1

Google Scholar

[8] A.L. Ahmad, B.S. Ooi, Properties-performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, Journal of Membrane Science, 255 (2005) 67-77.

DOI: 10.1016/j.memsci.2005.01.021

Google Scholar

[9] F. Yang, S. Zhang, D. Yang, X. Jian, Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane, Journal of Membrane Science, 301 (2007) 85-92.

DOI: 10.1016/j.memsci.2007.06.009

Google Scholar

[10] J. Tanninen, M. Mänttäri, M. Nyström, Effect of salt mixture concentration on fractionation with NF membranes, Journal of Membrane Science, 283 (2006) 57-64.

DOI: 10.1016/j.memsci.2006.06.012

Google Scholar

[11] A. Sungpet, R. Jiraratananon, P. Luangsowan, Treatment of effluents from textile-rinsing operations by thermally stable nanofiltration membranes, Desalination, 160 (2004) 75-81.

DOI: 10.1016/s0011-9164(04)90019-7

Google Scholar

[12] C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti. Retention of mineral salts by a polyamide nanofiltration membrane, Sep. Pur. Technol., 30 (2003), p.47–55.

DOI: 10.1016/s1383-5866(02)00107-7

Google Scholar

[13] A.L. Ahmad, B.S. Ooi, A.W. Mohammad, J.P. Choudhury, Development of a highly hydrophilic nanofiltration membrane for desalination and water treatment, Desalination 168 (2004) 215–221.

DOI: 10.1016/j.desal.2004.07.001

Google Scholar

[14] S. Hong, M. Elimelech, Chemical and physical aspects of natural organic matter(NOM)fouling of nanofiltration membranes, J. Membr. Sci. 132 (1997) 159–181.

DOI: 10.1016/s0376-7388(97)00060-4

Google Scholar