Effects of Silage Additives on Biogas Production of Hybrid Penisetum

Article Preview

Abstract:

This study investigated the effects of silage additives on the anaerobic digestion performance of hybrid penisetum to produce methane. Specifically, we evaluated the effects of adding lactic acid bacteria (0, 1.0×105, 1.5×105, 2.0×105 cfu.g-1) and cellulase (0, 0.01, 0.02, 0.03 g.t-1) during ensilage for 45 days on biogas production of hybrid penisetum. The silage additives lactic acid bacteria (1.0×105cfu.g-1, 2.0×105cfu.g-1) and cellulase (0.03g.t-1) had a positive effect on the anaerobic fermentation performance of hybrid penisetum silage. The hybrid penisetum amended with 0.03 g.t-1 of cellulase showed the best biochemical methane potentials, with a methane yield of 218.15lN kg-1 ODMadded. The results of this study clearly demonstrate that type and concentration of additives influence biogas production by silage.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1070-1072)

Pages:

112-120

Citation:

Online since:

December 2014

Export:

Price:

* - Corresponding Author

[1] Weiland, P., Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010).

DOI: 10.1007/s00253-009-2246-7

Google Scholar

[2] Blokhina, Y.N., Prochnow, A., Plöchl, M., Luckhaus, C., Heiermann,M. Concepts and profitability of biogas production from landscape management grass. Bioresour. Technol. 102, 2086–2092 (2011).

DOI: 10.1016/j.biortech.2010.08.002

Google Scholar

[3] Christiane Herrmann, Monika Heiermann, Christine Idler. Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresour. Technol. 102, 5153–5161(2011).

DOI: 10.1016/j.biortech.2011.01.012

Google Scholar

[4] Kung Jr, L., Stokes, M.R., Lin, C.J. Silage additives. In: Al-Amoodi, L., Barbarick, K.A., Volenec, J.J., Dick, W.A. (Eds. ), Silage Science and Technology. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, USA, 305–360 (2003).

DOI: 10.2134/agronmonogr42.c7

Google Scholar

[5] Hellings P, G, Bertin, M, Vanbelle. Effect of lactic acid bacteria on silage fermentation. in Proc. 15th Int. Grassl. Congr. Kyotosyuppan, Kyoto, Japan. 932-933. (1985).

Google Scholar

[6] Idler, C.; Heckel, M.; Herrmann, C. Influence of biological additives in grass silages on the biogas yield. Zemes Ukio Inzinerija, Mokslo Darbai. 39, 4, 69-82 (2007).

Google Scholar

[7] Outi Pakarinen, Annimari Lehtomäki, Sanna Rissanen, Jukka Rintala. Storing energy crops for methane production: Effects of solids content and biological additive. Bioresource Technology. 99, 7074–7082 (2008).

DOI: 10.1016/j.biortech.2008.01.007

Google Scholar

[8] Chen J, Stokes MR, Wallace CR. Effects of enzymeinoculant systems on preservation and nutritive value of haycrop and corn silages. Journal of Dairy Science 77, 501–512 (1994).

DOI: 10.3168/jds.s0022-0302(94)76978-2

Google Scholar

[9] Sheperd A C, Kung L. Effect of an enzyme additive on composition of corn silage ensiled at various stages of maturity. Dairy Science, 79, 1767-1773 (1996).

DOI: 10.3168/jds.s0022-0302(96)76544-x

Google Scholar

[10] Walker, M., Zhang, Y., Heaven, S., Banks, C. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour. Technol. 100, 6339–6346 (2010).

DOI: 10.1016/j.biortech.2009.07.018

Google Scholar

[11] VDI, VDI standard procedures 4630: fermentation of organic materials. characterisation of the substrate, sampling, collection of material data. fermentation tests. Verein Deutscher Ingenieure, Beuth Verlag, Berlin. p.92(2006).

Google Scholar

[12] J. Castro-Montoya, S. De Campeneere, G. Van Ranst, V. Fievez. Interactions between methane mitigation additives and basal substrates on in vitro methane and VFA production. Animal Feed Science and Technology. 176, 47-60 (2012).

DOI: 10.1016/j.anifeedsci.2012.07.007

Google Scholar

[13] Han K J, M Collins, E S Vanzant, et al Bale density and moisture effects on alfalfa round bale silage. Crop Science, 44, 3, 914-919. (2004).

DOI: 10.2135/cropsci2004.9140

Google Scholar

[14] Isabel Rodríguez Amado, Clara Fuci˜nos, Paula Fajardo, Nelson P. Guerra, Lorenzo Pastrana. Evaluation of two bacteriocin-producing probiotic lactic acid bacteria as inoculants for controlling Listeria monocytogenes in grass and maize silages. Animal Feed Science and Technology. 175, 137-149(2012).

DOI: 10.1016/j.anifeedsci.2012.05.006

Google Scholar

[15] Broderica G. A, J.H. Kang. Automated simultaneous determination of ammonia and amino acids in ruminal fluid and in vitro media. J. Dairy Sci., 33, 64-75 (1980).

DOI: 10.3168/jds.s0022-0302(80)82888-8

Google Scholar

[16] AOAC. Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Gaithersburg, MD. (2006).

Google Scholar

[17] Daniels, L., Hanson, R.S., Phillips, J. A Metabolism. Chemical analysis. In: Gerhardt, P., Wood, W.A. (Eds. ), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, 512–554 (1994).

Google Scholar

[18] Van Soest, P.J., Robertson, J.B., Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991).

DOI: 10.3168/jds.s0022-0302(91)78551-2

Google Scholar

[19] Chynoweth, D.P., Turick, C.E., Owens, J.M., Jerger, D.E., Peck, M.W. Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5, 95–111 (1993).

DOI: 10.1016/0961-9534(93)90010-2

Google Scholar

[20] Shao T, Ohba N, Shimojo M , et al. Fermentation quality of forage oat ( Avena sativa L. ) silages treated with pre-fermented juices, sorbic acid, glucose and encapsulated-glucose. Journal of Faculty of Agriculture, Kyushu University, 47, 2, 341-349 (2003).

DOI: 10.5109/4504

Google Scholar

[21] Shao T, Ohba N, Shimojo M, et al. Effects of adding glucose, sorbic acid and pre-fermented juices on the fermentation quality of guineagrass (Panicum maximum Jacq. ) silages. Asian Australian Journal Animal Science. 17, 6, 808-813 (2004).

DOI: 10.5713/ajas.2004.808

Google Scholar

[22] Shao T, Zhang L, Shimojo M, Masuda Y. Fermentation quality of Italian ryegrass (Lolium multiflorum Lam. ) silages treated with encapsulated-glucose, glucose, sorbic acid and pre-fermented juices. Asian – Australasian Journal of Animal Sciences. 20, 11, 1699-1704 (2007).

DOI: 10.5713/ajas.2007.1699

Google Scholar

[23] Sun QiZhong, Gao FengQin, Yu Zhu. et al. Fermentation quality and chemical composition of shrub silage treated with lactic acid bacteria inoculants and cellulase additives. Animal Science Journal. 83, 305-309(2012).

DOI: 10.1111/j.1740-0929.2011.00962.x

Google Scholar

[24] L Kung, BR Carmen, RS Tung. Microbial inoculants or cellulase enzyme treatment of barley and vetch silages harvested at three maturities . J. Dairy Sci., 73, 1304-1311 (1990).

DOI: 10.3168/jds.s0022-0302(90)78796-6

Google Scholar

[25] Yu Zhu, Naoki Nishino, Yoshiro Kishida, Senji Uchida. Ensiling characteristics and ruminal degradation of Italian ryegrass and lucerne silages treated with cell wall-degrading enzymes. Journal of the Science of Food and Agriculture. 79, 1987-1992 (1999).

DOI: 10.1002/(sici)1097-0010(199911)79:14<1987::aid-jsfa466>3.0.co;2-j

Google Scholar

[26] Aniwaru, A; Ishida, T; Watanabe, T. The effect of cellulase on cell wall structure and the rumen digestion of timothy silage. Proceedings of the XIX international grassland congress: grassland ecosystems: an outlook into the 21st century. 780-781 (2001).

Google Scholar

[27] De Figueiredo M, Marais J P. The effect of bacterial inoculants on Kikuyu silage quality . Journal of the Agricultural science. 122, 11, 53-60 (1994).

DOI: 10.1017/s0021859600065795

Google Scholar

[28] Stokes, MR. Effects of an Enzyme mixture, an inoculant, and their interaction on silage fermentation and dairy production. Journal of Dairy Science. 75, 3, 764-773. (1992).

DOI: 10.3168/jds.s0022-0302(92)77814-x

Google Scholar

[29] Tengerdy RP. Ensiling alfalfa with additives of lactic acid bacteria and enzymes. J. Sci. Food Agric. 55, 215-218 (1991).

DOI: 10.1002/jsfa.2740550207

Google Scholar

[30] Amon, T., Amon, B., Kryvoruchko, V., Machmüller, A., Hopfner-Sixt, K., Bodiroza, V., Hrbek, R., Friedel, J., Pötsch, E., Wagentristl, H., Schreiner, M., Zollitsch, W. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 98, 3204–3212. (2007).

DOI: 10.1016/j.biortech.2006.07.007

Google Scholar

[31] Gunaseelan, V.N. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13, 83–114. (1997).

DOI: 10.1016/s0961-9534(97)00020-2

Google Scholar

[32] Klimiuk, E., Pokój, T., Wojciech, B., Dubis, B. Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour. Technol. 101, 9527–9535. ( 2010).

DOI: 10.1016/j.biortech.2010.06.130

Google Scholar

[33] Oude Elferink, S.J.W.H., Krooneman, J., et al. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67, 125–132 (2001).

DOI: 10.1128/aem.67.1.125-132.2001

Google Scholar

[34] Banemann, D., N. Engler, T. Fritz and M. Nelles. Practice-oriented determination of gas formation potentials as basis or the economical operation of biogas plants (in German). In: M. Nelles, ed. 1. Rostocker Bioenergieforum - Bioenergieland Mecklenburg-Vorpommern, Rostock (D). 199-209 (2007).

Google Scholar

[35] Vervaeren, H., Hostyn, K., Ghekiere, G., et al. Biological ensilage additives as pretreatment for maize to increase the biogas production. Renewable Energy, 35, 2089–2093 (2010).

DOI: 10.1016/j.renene.2010.02.010

Google Scholar

[36] IWA. Task Group for Mathematical Modelling of Anaerobic Digestion Processes. Anaerobic Digestin Model No. 1 (ADM1) IWA Publishing (2002).

DOI: 10.2166/9781780403052

Google Scholar

[37] M. Plöchl, H. Zacharias, C. Herrmann, M. Heiermann et al. Influence of silage additives on methane yield and economic performance of selected feedstock. Agricultural Engineering International: the CIGR Ejournal. Manuscript 1123, 6, 1-16. ( 2009).

Google Scholar

[38] Zacharias, H.; Plochl, M.; Herrmann, C. Which silage additives for biogas plants? Transforming fuel plants efficiently into methane. Neue Landwirtschaft. 8, 85-87 (2008).

Google Scholar