Aspects of Ecodesign when Designing a Retort with Decreased Emissions in the Production of Biochar

Article Preview

Abstract:

The paper pinpoints the important aspects of ecodesign when designing a retort with decreased emissions in the production of biochar. When designing changes in the construction of equipment for the production of biochar, the requirements for minimum material and energy demands and the need to reduce emissions to the environment were taken into account. In the pyrolysis processes for the production of biochar, we mainly monitored the following inputs and outputs from/to the environment using life cycle analysis and ecodesign. When the decreasing emissions aspect was not included in an ecodesign, the measurements showed standard damage to the atmosphere characteristic for the production of biochar. The results of measuring emissions from the production of biochar in a retort with decreased emissions showed a significant decrease in emissions. Designs take into consideration the need to minimise the local materials available for the production of equipment for the production of biochar and the availability of raw materials for biochar (mainly accessible and suitable waste). The overall environmental profile (assessment) of biochar is improving based on this construction and conceptual design. Using such a strategic approach, other applications for ecodesign, inventory analysis and assessment of the life cycle of biochar are possible.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-14

Citation:

Online since:

August 2014

Export:

Price:

* - Corresponding Author

[1] D. Tonini and T. Astrup: LCA of biomass-based energy systems: A case study for Denmark, Appl. Energy Vol. 99 (2012), pp.234-246.

DOI: 10.1016/j.apenergy.2012.03.006

Google Scholar

[2] Shie Je-Lueng, Ching-Yuan Chang, Ci-Syuan Chen, Dai-Gee Shaw, Yi-Hung Chen, Wen-Hui Kuan, Hsiao-Kan Ma: Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies. Bioresour. Technol. Vol. 102 (2011).

DOI: 10.1016/j.biortech.2011.02.116

Google Scholar

[3] H.H. Khoo, C.Y. Koh, M.S. Shaik, P.N. Sharratt: Bioenergy co-products derived from microalgae biomass via thermochemical conversion – Life cycle energy balances and CO2 emissions, Bioresour. Technol. Vol. 143 (2013), pp.298-307.

DOI: 10.1016/j.biortech.2013.06.004

Google Scholar

[4] G. Fiorentino, M. Ripa, S. Mellino, S. Fahd, S. Ulgiati: Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals, Journal of Cleaner Production, Vol. 66 (2014), pp.174-187.

DOI: 10.1016/j.jclepro.2013.11.043

Google Scholar

[5] C. Pieragostini, P. Aguirre, M. C. Mussati: Life cycle assessment of corn-based ethanol production in Argentina, Sci. Total Environ. Vol. 472 (2014), pp.212-225.

DOI: 10.1016/j.scitotenv.2013.11.012

Google Scholar

[6] T. Suramaythangkoor, S. H. Gheewala: Potential of practical implementation of rice straw-based power generation in Thailand, Energy Policy Vol. 36 (2008), pp.3193-3197.

DOI: 10.1016/j.enpol.2008.05.002

Google Scholar

[7] N. Kauffman, D. Hayes, R. Brown: A life cycle assessment of advanced biofuel production from a hectare of corn, Fuel Vol. 90, (2011), pp.3306-3314.

DOI: 10.1016/j.fuel.2011.06.031

Google Scholar

[8] R. Ibarrola, S. Shackley, J. Hammond: Pyrolysis biochar systems for recovering biodegradable materials: A life cycle carbon assessment, Waste Manage. Vol. 32 (2012), pp.859-868.

DOI: 10.1016/j.wasman.2011.10.005

Google Scholar

[9] Thu Lan T. Nguyen, J. E. Hermansen, L. Mogensen: Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark, Appl. Energy Vol. 104 (2013), pp.633-641.

DOI: 10.1016/j.apenergy.2012.11.057

Google Scholar

[10] Nur Zalikha Rebitanim, Wan Azlina Wan Ab Karim Ghani, Nur Akmal Rebitanim, Mohamad Amran Mohd Salleh: Potential applications of wastes from energy generation particularly biochar in Malaysia, Renewable and Sustainable Energy Rev. Vol. 21, (2013).

DOI: 10.1016/j.rser.2012.12.051

Google Scholar

[11] Yun Tian, Xiangyang Sun, Suyan Li, Haiyan Wang, Lanzhen Wang, Jixin Cao, Lu Zhang, Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata, Scientia Horticulturae Vol. 143 (2012), pp.15-18.

DOI: 10.1016/j.scienta.2012.05.018

Google Scholar

[12] Mohammad I. Al-Wabel, Abdulrasoul Al-Omran, Ahmed H. El-Naggar, Mahmoud Nadeem, A. R. A. Usman: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes, Bioresour. Technol. Vol. 131 (2013).

DOI: 10.1016/j.biortech.2012.12.165

Google Scholar

[13] EPA/600/R-99/109: Greenhouse Gases From Small-Scale Combustion Devices in Developing Countries: Charcoal-Making Kilns in Thailand, December (1999) http: /www. epa. gov/nrmrl/pubs/600r99109. html.

Google Scholar

[14] Pro-Natura: Green-Charcoal, December (2004) http: /stoves. bioenergylists. org/stovesdoc/Martirena/GreenCharcoal%20Jan%202005%20compressed. pdf.

Google Scholar

[15] D. Kammen, D. Lew: Review of Technologies for the Production and Use of Charcoal, University of California, Berkeley, California, USA, (2005).

Google Scholar

[16] J.C. Adam: Report on the Mission to Build an ICPS (Improved Charcoal Production System) / adam-retort, for the Production of Sustainable Wood Charcoal, Gallmann Foundation, Kenya, (2005).

Google Scholar

[17] J.C. Adam: Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal), Renewable Energy Vol. 34 (2009), p.1923–(1925).

DOI: 10.1016/j.renene.2008.12.009

Google Scholar

[18] N. Müller, A. Michaelowa: Proposal for a new standardised baseline for charcoal projects in the Clean Development Mechanism, Zurich, December (2011) http: /cdm. unfccc. int/methodologies/standard_base/npbcharcoal. pdf.

Google Scholar

[19] UNDP: Nationally Appropriate Mitigation Action Study on Sustainable Charcoal in Uganda, UNDP MDG Carbon, February 4 (2013) http: /mdgcarbonfacility. org/downloads/CharcoalNAMAstudy_9Jan2013. pdf.

Google Scholar

[20] E. Hroncová, J. Ladomerský, Ch. Adam, A. Zacharová: A Project of Charcoal Production with Reduced Emissions and Environmental Engineering Education in the field. In. 3rd ICEEE International Scientific Conference OnEnvironmental Engineering, Budapest, Hungary Óbuda University Rejtő Sándor 20 – 23 November (2012).

Google Scholar

[21] J. Ladomerský, E. Hroncová, I. Fremel: Perspective techniques of CO2 sequestration. In: 2nd International Conference PETrA 2013 (Pollution and Environment Treatment of Air), Prague, Czech Republic in June 4-6 (2013).

Google Scholar

[22] J. Hammond, S. Shackley, S. Sohi, P. Brownsort: Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK, Energy Policy Vol. 39 (2011), pp.2646-2655.

DOI: 10.1016/j.enpol.2011.02.033

Google Scholar

[23] Yu-Fong Huang, Fu-Siang Syu, Pei-Te Chiueh, Shang-Lien Lo: Life cycle assessment of biochar cofiring with coal, Bioresour. Technol. Vol. 131 (2013), pp.166-171.

DOI: 10.1016/j.biortech.2012.12.123

Google Scholar

[24] J. Han, A. Elgowainy, J. B. Dunn, M. Q. Wang: Life cycle analysis of fuel production from fast pyrolysis of biomass, Bioresour. Technol. Vol. 133 (2013), pp.421-428.

DOI: 10.1016/j.biortech.2013.01.141

Google Scholar

[25] T. Mattila, J. Grönroos, J. Judl, Marja-Riitta Korhonen: Is biochar or straw-bale construction a better carbon storage from a life cycle perspectiveN/A, Process Safety and Environmental Protection, Vol. 90 ( 2012), pp.452-458.

DOI: 10.1016/j.psep.2012.10.006

Google Scholar

[26] O. Mašek, V. Budarin, M. Gronnow, K. Crombie, P. Brownsort, E. Fitzpatrick, P. Hurst: Microwave and slow pyrolysis biochar—Comparison of physical and functional properties, J. Anal. Appl. Pyrolysis Vol. 100 (2013), pp.41-48.

DOI: 10.1016/j.jaap.2012.11.015

Google Scholar

[27] A. Downie, D. Lau, A. Cowie, P. Munroe: Approaches to greenhouse gas accounting methods for biomass carbon, Biomass and Bioenergy Vol. 60 (2014), pp.18-31.

DOI: 10.1016/j.biombioe.2013.11.009

Google Scholar

[28] EC-JRC: General guide for Life Cycle Assessment—Detailed guidance. ILCD Handbook, European Union, (2010) at http: /lct. jrc. ec. europa. eu/pdf-directory/ILCD-Handbook-General-guide-for-LCA-DETAIL-online-12March2010. pdf.

Google Scholar

[29] EC-JRC: Recommendations for life cycle impact assessment in the European context. ILCD Handbook, European Union, 2011, at http: /lct. jrc. ec. europa. eu/pdf-directory/ILCD%20Handbook%20Recommendations%20for%20Life%20Cycle%20Impact%20Assessment%20in%20the%20European%20context. pdf.

Google Scholar

[30] J. Jeswiet, M. Hauschild: EcoDesign and future environmental impacts, Mater. Des. Vol. 26 (2005), pp.629-634.

DOI: 10.1016/j.matdes.2004.08.016

Google Scholar

[31] F. Kurk, P. Eagan: The value of adding design-for-the-environment to pollution prevention assistance options, J. Cleaner Prod. Vol. 16 (2008), pp.722-726.

DOI: 10.1016/j.jclepro.2007.02.022

Google Scholar

[32] ISO 14040: Environmental managements—life cycle assessments—principles and framework. International Organisation for Standardisation. Geneva (2006).

Google Scholar

[33] ISO 14044: Environmental managements—life cycle assessments—requirements and guidelines. International Organisation for Standardisation. Geneva (2006).

Google Scholar

[34] ISO/TR 14062: 2002, Environmental management - Integrating environmental aspects into product design and development, International Organisation for Standardisation. Geneva (2002).

Google Scholar

[35] H. Brezet and C. V. Hemel: ECODESIGN-A PROMISING APPROACH to sustainable production and consumption (1997), UNEP. http: /www. unepie. org/ home. html.

Google Scholar

[36] Kun-Mo Lee: ECODESIGN Best Practice of ISO/TR 14062, Eco-product Research Institute (ERI), Ajou University, Committee on Trade and Investment Ministry of Commerce, Industry and Energy Republic of Korea (2005).

Google Scholar

[37] J.C. Adam: Design, construction and emissions of a carbonization system including a hybrid retort to char biomass. Dissertation. Technical University in Zvolen (2013), pp.1-102.

Google Scholar

[38] E. Hroncová, J. Ladomerský, C. Adam: Inovácia techniky pyrolýzy a výroby biouhlia z hľadiska minimalizácie emisií a  skleníkových plynov. Vedecká monografia. Zvolen: TU vo Zvolene (2013).

Google Scholar

[39] J. Martinka, D. Kačíková, E. Hroncová, J. Ladomerský: Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions, J. Therm. Anal. Calorim. Vol. 110 (2012), pp.193-198.

DOI: 10.1007/s10973-012-2261-2

Google Scholar

[40] Martinka, J., Chrebet, T., Hrušovský, I., Balog, K. 2013. Assessment of the impact of heat flux density on the combustion efficiency and fire hazard of spruce pellets. European Journal of Environmental and Safety Sciences Vol. 1, pp.24-31.

DOI: 10.4028/www.scientific.net/amm.501-504.2451

Google Scholar

[41] P. Pitter: Hydrochemie, VŠCHT Praha (2009).

Google Scholar

[42] G. Cornelissen, V. Martinsen , V. Shitumbanuma, V. Alling, G.D. Breedveld, D.W. Rutherford, M. Sparrevik, S.E. Hale, A. Obia, J. Mulder: Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia Agronomy Vol. 3 (2013).

DOI: 10.3390/agronomy3020256

Google Scholar

[43] T.J. Clough, L. M. Condron, C. Kammann, C. Müller: A Review of Biochar and Soil Nitrogen Dynamics Agronomy Vol. 3 (2013), pp.275-293.

DOI: 10.3390/agronomy3020275

Google Scholar

[44] K. Harris, J. Gaskin, M. Cabrera, W. Miller, K. Das: Characterization and Mineralization Rates of Low Temperature Peanut Hull and Pine Chip Biochars Agronomy Vol. 3 (2013), pp.294-312.

DOI: 10.3390/agronomy3020294

Google Scholar

[45] H. Schulz, G. Dunst, B. Glaser: No Effect Level of Co-Composted Biochar on Plant Growth and Soil Properties in a Greenhouse Experiment  Agronomy Vol. 4 (2014), pp.34-51.

DOI: 10.3390/agronomy4010034

Google Scholar

[46] L. Montanarella, E. Lugato: The Application of Biochar in the EU: Challenges and Opportunities.  Agronomy Vol. 3 (2013), pp.462-473.

DOI: 10.3390/agronomy3020462

Google Scholar

[47] U. Ogbonnaya, K.T. Semple: Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk?  Agronomy Vol. 3 (2013), pp.349-375.

DOI: 10.3390/agronomy3020349

Google Scholar

[48] A. Mukherjee, R. Lal: Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions  Agronomy Vol. 3 (2013), pp.313-339.

DOI: 10.3390/agronomy3020313

Google Scholar

[49] S. Carter, S. Shackley, S. Sohi, T. B. Suy, S. Haefele: The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis)  Agronomy Vol. 3 (2013), pp.404-418.

DOI: 10.3390/agronomy3020404

Google Scholar

[50] J. Harter, H. M. Krause, S. Schuettler, R. Ruser, M. Fromme, T. Scholten, A. Kappler, S. Behrens: Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. In: The ISME Journal 8 (2014).

DOI: 10.1038/ismej.2013.160

Google Scholar

[51] J. Beck, D. Kalderis, E. Agrafioti, E. Diamadopoulos: Country Report on Current Biochar Research, Biochar as Option for Sustainable Resource Management, COST Action TD 1107 (2012).

Google Scholar

[52] A. Ďuricová, H. Hybská, J. Mitterpach:  Possibilities of reducing risks of Environment contamination from sewage sludge, Journal of the Geographical Institute Jovan Cvijić, SASA : international conference Natural hazards - Links between science and practice: Belgrade, October 8-11th, Vol. 63 (2013).

DOI: 10.2298/ijgi1303183d

Google Scholar

[53] E. Hroncová, J. Ladomerský, C. Adam: The use of wood from degraded land for carbon sequestration, Instytut Technologii Drewna, Drewno Vol. 56 (2013), pp.51-6.

Google Scholar