Photocatalyst Prepared from the Groundwater Sediment

Article Preview

Abstract:

In this paper, α–Fe2O3 photocatalyst with enhanced solar–driven photocatalytic activity was obtained from natural local groundwater sediment using a chemical solution method with subsequent calcination. The phase structures and crystallite size characterized by X–ray diffraction. The morphology and the particle size were investigated by scanning electron microscopy. The α–Fe2O3 was used as a catalyst to photodegrade MB under visible light illumination. The photocatalytic reaction rate constant of the α–Fe2O3 photocatalyst in the photocatalytic degradation of MB dye solution under LED light illumination with the presence of H2O2 was calculated to be 1.70×10–2 min–1. Moreover, the effect of H2O2 concentration on photocatalytic efficiency and the photocatalytic mechanism also were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-121

Citation:

Online since:

January 2019

Export:

Price:

* - Corresponding Author

[1] M.M. Khan, S.F. Adil, A. Al–Mayouf, Metal oxides as photocatalysts, J. Saudi Chem. Soc. 19(5) (2015) 462–464.

DOI: 10.1016/j.jscs.2015.04.003

Google Scholar

[2] M. Mishra, D.–M. Chun, α–Fe2O3 as a photocatalytic material: A review, Appl. Catal. A–Gen. 498 (2015) 126–141.

Google Scholar

[3] Z. Zhang, M.F. Hossain, T. Takahashi, Fabrication of shape–controlled α–Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application, Mater. Lett. 64 (2010) 435–438.

DOI: 10.1016/j.matlet.2009.10.071

Google Scholar

[4] W. Sun, Q. Meng, L. Jing, L. He, X. Fu, Synthesis of long–lived photogenerated charge carriers of Si–modified α–Fe2O3 and its enhanced visible photocatalytic activity, Mater. Res. Bull. 49 (2014) 331–337.

DOI: 10.1016/j.materresbull.2013.09.008

Google Scholar

[5] D. Peng, S. Beysen, Q. Li, Y. Sun, L. Yang, Hydrothermal synthesis of monodisperse α–Fe2O3 hexagonal platelets, Particuology 8 (2010) 386–389.

DOI: 10.1016/j.partic.2010.05.003

Google Scholar

[6] J. Gu, S. Li, E. Wang, Q. Li, G. Sun, R. Xu, H. Zhang, Single–crystalline α–Fe2O3 with hierarchical structures: Controllable synthesis, formation mechanism and photocatalytic properties, J. Solid State Chem. 182 (2009) 1265–1272.

DOI: 10.1016/j.jssc.2009.01.041

Google Scholar

[7] T. Kawahara, K.–I. Yamada, H. Tada, Visible light photocatalytic decomposition of 2–naphthol by anodic–biased α–Fe2O3 film, J. Colloid Interf. Sci. 294 (2006) 504–507.

DOI: 10.1016/j.jcis.2005.07.041

Google Scholar

[8] V.M.S. Rocha, M.G. Pereira, L.R. Teles, M.O.G. Souza, Effect of copper on the photocatalytic activity of semiconductor–based titanium dioxide (anatase) and hematite (α–Fe2O3), Mater. Sci. Eng. B. 185 (2014) 13–20.

DOI: 10.1016/j.mseb.2014.02.004

Google Scholar

[9] L. Qin, X. Pan, L. Wang, X. Sun, G. Zhang, X. Guo, Facile preparation of mesoporous TiO2(B) nanowires with well–dispersed Fe2O3 nanoparticles and their photochemical catalytic behavior, Appl. Catal. B–Environ. 150–151 (2014) 544–553.

DOI: 10.1016/j.apcatb.2013.12.055

Google Scholar

[10] H. Ren, P. Koshy, W.–F. Chen, S. Qi, C.C. Sorrell, Photocatalytic materials and technologies for air purification, J. Hazard. Mater. 325 (2017) 340–366.

DOI: 10.1016/j.jhazmat.2016.08.072

Google Scholar

[11] R. Satheesh, K. Vignesh, A. Suganthi, M. Rajarajan, Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped α–Fe2O3 nanoparticles, J. Environ. Chem. Eng. 2 (2014) 1956–(1968).

DOI: 10.1016/j.jece.2014.08.016

Google Scholar

[12] X. Liu, K. Chen, J.–J. Shim, J. Huang, Facile synthesis of porous Fe2O3 nanorods and their photocatalytic properties, J. Saudi Chem. Soc. 19 (2015) 479–484.

DOI: 10.1016/j.jscs.2015.06.009

Google Scholar

[13] J. Wang, C. Li, J. Cong, Z. Liu, H. Zhang, M. Liang, J. Gao, S. Wang, J. Yao, Facile synthesis of nanorod–type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance, J. Solid State Chem. 238 (2016) 246–251.

DOI: 10.1016/j.jssc.2016.03.042

Google Scholar

[14] N.M. Mahmoodi, M. Arami, N.Y. Limaee, K. Gharanjig, Photocatalytic degradation of agricultural N–heterocyclic organic pollutants using immobilized nanoparticles of titania, J. Hazard. Mater. 145 (2007) 65–71.

DOI: 10.1016/j.jhazmat.2006.10.089

Google Scholar