An Adaptive Discrete Element Method for Physical Modeling of the Selective Laser Sintering Process

Article Preview

Abstract:

Selective Laser Sintering (SLS) has recently become one of the fastest growing additive manufacturing processes due to its capability of fabricating metal parts with high dimensional accuracy and surface quality. Physical modeling of this process plays an important role in properly controlling the process parameters of the process. In this paper, we present a 3 dimensional, adaptive discrete element method for simulation of the SLS process on personal computers. The presented method models the laser-powder interaction at particle level, achieving high simulation accuracy while adaptively increasing the discrete element size as local temperatures drop inside the powder bed for improved efficiency. Numerical shape functions are developed for calculating individual particle temperatures at any point during the simulation. Results show that this physical model improves the runtime significantly in virtual simulation of SLS process without loss of simulation accuracy.

You have full access to the following eBook

Info:

Periodical:

Pages:

69-84

Citation:

Online since:

August 2017

Export:

* - Corresponding Author

[1] A. Aremu, I. Ashcroft, R. Wildman, R. Hague, C. Tuck, and D. Brackett, The effects of bidirectional evolutionary structural optimization parameters on an industrial designed component for additive manufacture, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227 (2013).

DOI: 10.1177/0954405412463857

Google Scholar

[2] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications, Springer Science & Business Media, (2013).

Google Scholar

[3] A. Chatterjee, S. Kumar, P. Saha, P. Mishra, and A. R. Choudhury, An experimental design approach to selective laser sintering of low carbon steel, Journal of Materials Processing Technology, 136 (2003), pp.151-157.

DOI: 10.1016/s0924-0136(03)00132-8

Google Scholar

[4] R. Dayal and T. Gambaryan-Roisman, Heat transfer in granular medium for application to selective laser melting: A numerical study, International Journal of Thermal Sciences, 113 (2017), pp.38-50.

DOI: 10.1016/j.ijthermalsci.2016.11.014

Google Scholar

[5] R. Ganeriwala and T. I. Zohdi, Multiphysics modeling and simulation of selective laser sintering manufacturing processes, Procedia CIRP, 14 (2014), pp.299-304.

DOI: 10.1016/j.procir.2014.03.015

Google Scholar

[6] R. Ganeriwala and T. I. Zohdi, A coupled discrete element-finite difference model of selective laser sintering, Granular Matter, 18 (2016), p.21.

DOI: 10.1007/s10035-016-0626-0

Google Scholar

[7] I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing, Springer US, 2010. cited By 165.

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[8] A. Gobal and B. Ravani, Physical modeling for selective laser sintering (sls) process, Journal of Computing and Information Science in Engineering, (2016).

Google Scholar

[9] H. Haddad, M. Guessasma, and J. Fortin, Heat transfer by conduction using dem-fem coupling method, Computational Materials Science, 81 (2014), pp.339-347.

DOI: 10.1016/j.commatsci.2013.08.033

Google Scholar

[10] D. He, N. N. Ekere, and L. Cai, Computer simulation of random packing of unequal particles, Phys. Rev. E, 60 (1999), pp.7098-7104.

DOI: 10.1103/physreve.60.7098

Google Scholar

[11] S. Kolossov, E. Boillat, R. Glardon, P. Fischer, and M. Locher, 3d {FE} simulation for temperature evolution in the selective laser sintering process, International Journal of Machine Tools and Manufacture, 44 (2004), pp.117-123.

DOI: 10.1016/j.ijmachtools.2003.10.019

Google Scholar

[12] I. Kovaleva, O. Kovalev, and I. Smurov, Model of heat and mass transfer in random packing layer of powder particles in selective laser melting, Physics Procedia, 56 (2014), pp.400-410.

DOI: 10.1016/j.phpro.2014.08.143

Google Scholar

[13] J. P. Kruth, P. Mercelis, J. V. Vaerenbergh, L. Froyen, and M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal, 11 (2005), pp.26-36.

DOI: 10.1108/13552540510573365

Google Scholar

[14] Y. Liang and X. Li, A new model for heat transfer through the contact network of randomly packed granular material, Applied Thermal Engineering, 73 (2014), pp.984-992.

DOI: 10.1016/j.applthermaleng.2014.08.063

Google Scholar

[15] H. -T. Liao and J. -R. Shie, Optimization on selective laser sintering of metallic powder via design of experiments method, Rapid Prototyping Journal, 13 (2007), pp.156-162.

DOI: 10.1108/13552540710750906

Google Scholar

[16] C. Martin, L. Schneider, L. Olmos, and D. Bouvard, Discrete element modeling of metallic powder sintering, Scripta Materialia, 55 (2006), pp.425-428.

DOI: 10.1016/j.scriptamat.2006.05.017

Google Scholar

[17] D. Moser, S. Fish, J. Beaman, and J. Murthy, Multi-layer computational modeling of selective laser sintering processes, in ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2014, pp. V02AT02A008- V02AT02A008.

DOI: 10.1115/imece2014-37535

Google Scholar

[18] D. Moser, S. Pannala, and J. Murthy, Computation of effective radiative properties of powders for selective laser sintering simulations, JOM, 67 (2015), pp.1194-1202.

DOI: 10.1007/s11837-015-1386-8

Google Scholar

[19] , Computation of effective thermal conductivity of powders for selective laser sintering simulations, Journal of Heat Transfer, 138 (2016), p.082002.

DOI: 10.1115/1.4033351

Google Scholar

[20] J. M. Musser, Modeling of Heat Transfer and Reactive Chemistry for Particles in Gas-Solid Flow Utilizing Continuum-Discrete Methodology (CDM), West Virginia University Libraries, (2011).

DOI: 10.33915/etd.4760

Google Scholar

[21] J. C. Nelson, S. Xue, J. W. Barlow, J. J. Beaman, H. L. Marcus, and D. L. Bourell, Model of the selective laser sintering of bisphenol-a polycarbonate, Industrial & Engineering Chemistry Research, 32 (1993), pp.2305-2317.

DOI: 10.1021/ie00022a014

Google Scholar

[22] D. Pal, N. Patil, K. Zeng, and B. Stucker, An integrated approach to additive manufacturing simulations using physics based, coupled multiscale process modeling, Journal of Manufacturing Science and Engineering, 136 (2014), pp.061022-061022.

DOI: 10.1115/1.4028580

Google Scholar

[23] J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and D. Zorin, Elastic textures for additive fabrication, ACM Transactions on Graphics, 34 (2015).

DOI: 10.1145/2766937

Google Scholar

[24] F. Parhami and R. McMeeking, A network model for initial stage sintering, Mechanics of Materials, 27 (1998), pp.111-124.

DOI: 10.1016/s0167-6636(97)00034-3

Google Scholar

[25] R. B. Patil and V. Yadava, Finite element analysis of temperature distribution in single metallic powder layer during metal laser sintering, International Journal of Machine Tools and Manufacture, 47 (2007), pp.1069-1080.

DOI: 10.1016/j.ijmachtools.2006.09.025

Google Scholar

[26] S. Price, B. Cheng, J. Lydon, K. Cooper, and K. Chou, On process temperature in powder-bed electron beam additive manufacturing: process parameter effects, Journal of Manufacturing Science and Engineering, 136 (2014), p.061019.

DOI: 10.1115/1.4028485

Google Scholar

[27] J. Rojek, S. Nosewicz, K. Pietrzak, and M. Chmielewski, Simulation of powder sintering using a discrete element model, acta mechanica et automatica, 7 (2013), pp.175-179.

DOI: 10.2478/ama-2013-0030

Google Scholar

[28] D. W. Rosen, Research supporting principles for design for additive manufacturing: This paper provides a comprehensive review on current design principles and strategies for am, Virtual and Physical Prototyping, 9 (2014), pp.225-232.

DOI: 10.1080/17452759.2014.951530

Google Scholar

[29] E. Rougier, A. Munjiza, and N. W. M. John, Numerical comparison of some explicit time integration schemes used in dem, fem/dem and molecular dynamics, Int. J. Numer. Meth. Engng., 61 (2004), pp.856-879.

DOI: 10.1002/nme.1092

Google Scholar

[30] J. C. Steuben, A. P. Iliopoulos, and J. G. Michopoulos, Discrete element modeling of particlebased additive manufacturing processes, Computer Methods in Applied Mechanics and Engineering, 305 (2016), pp.537-561.

DOI: 10.1016/j.cma.2016.02.023

Google Scholar

[31] B. Vayre, F. Vignat, and F. Villeneuve, Designing for additive manufacturing, Procedia CIRP, 3 (2012), pp.632-637.

DOI: 10.1016/j.procir.2012.07.108

Google Scholar

[32] J. A. Williams and R. S. Dwyer-Joyce, Contact between solid surfaces, Modern Tribology Handbook, 1 (2001), pp.121-162.

Google Scholar

[33] J. Xing, W. Sun, and R. Rana, 3d modeling and testing of transient temperature in selective laser sintering (sls) process, Optik - International Journal for Light and Electron Optics, 124 (2013), pp.301-304.

DOI: 10.1016/j.ijleo.2011.11.064

Google Scholar

[34] K. Zeng, D. Pal, N. Patil, and B. Stucker, A new dynamic mesh method applied to the simulation of selective laser melting, in Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Aug, 2013, pp.12-14.

Google Scholar

[35] H. Zhang, Q. Zhou, and Y. Zheng, A multi-scale method for thermal conduction simulation in granular materials, Computational Materials Science, 50 (2011), pp.2750-2758.

DOI: 10.1016/j.commatsci.2011.04.019

Google Scholar

[36] T. I. Zohdi, Rapid simulation of laser processing of discrete particulate materials, Archives of Computational Methods in Engineering, 20 (2013), pp.309-325.

DOI: 10.1007/s11831-013-9092-6

Google Scholar