Variational Approach to Dynamic Brittle Fracture via Gradient Damage Models

Article Preview

Abstract:

In this paper we present a family of gradient-enhanced continuum damage models which can be viewed as a regularization of the variational approach to fracture capable of predicting in a unified framework the onset and space-time dynamic propagation (growth, kinking, branching, arrest) of complex cracks in quasi-brittle materials under severe dynamic loading. The dynamic evolution problem for a general class of such damage models is formulated as a variational inequality involving the action integral of a generalized Lagrangian and its physical interpretation is given. Finite-element based implementation is then detailed and mathematical optimization methods are directly used at the structural scale exploiting fully the variational nature of the formulation. Finally, the link with the classical dynamic Griffith theory and with the original quasi-static model as well as various dynamic fracture phenomena are illustrated by representative numerical examples in quantitative accordance with theoretical or experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

334-341

Citation:

Online since:

August 2015

Export:

Price:

* - Corresponding Author

[1] Kim Pham and Jean-Jacques Marigo. Approche variationnelle de l'endommagement : II. Les modèles à gradient. Comptes Rendus Mécanique, 338(4): 199-206, 2010. Symmetry uy = 0 100 mm 75 mm v = 16. 5 m/s ≈ 64° ≈ 73° Damage field at t = 30 µs Damage field at t = 50 µs Damage field at t = 70 µs 100 mm 40 mm p = 1 MPa Damage field at t = 70 µs ≈ 30° Figure 5: In-plane kinking and branching.

DOI: 10.1016/j.crme.2010.03.012

Google Scholar

[2] Kim Pham, Hanen Amor, Jean-Jacques Marigo, and Corrado Maurini. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics, 20(4): 618-652, (2011).

DOI: 10.1177/1056789510386852

Google Scholar

[3] Eric Lorentz and V. Godard. Gradient damage models: Toward full-scale computations. Computer Methods in Applied Mechanics and Engineering, 200(21-22): 1927-1944, (2011).

DOI: 10.1016/j.cma.2010.06.025

Google Scholar

[4] A. Benallal, R. Billardon, and G. Geymonat. Bifurcation and Localization in Rate-Independent Materials. Some General Considerations. In Q.S. Nguyen, editor, Bifurcation and Stability of Dissipative Systems, volume 327 of International Centre for Mechanical Sciences, pages 1-44. Springer Vienna, (1993).

DOI: 10.1007/978-3-7091-2712-4_1

Google Scholar

[5] Ahmed Benallal and Jean-Jacques Marigo. Bifurcation and stability issues in gradient theories with softening. Modelling and Simulation in Materials Science and Engineering, 15(1): S283, (2007).

DOI: 10.1088/0965-0393/15/1/s22

Google Scholar

[6] Eric Lorentz and S. Andrieux. Analysis of non-local models through energetic formulations. International Journal of Solids and Structures, 40(12): 2905-2936, (2003).

DOI: 10.1016/s0020-7683(03)00110-0

Google Scholar

[7] Blaise Bourdin, Gilles A. Francfort, and Jean-Jacques Marigo. The Variational Approach to Fracture. Journal of Elasticity, 91(1-3): 5-148, (2008).

DOI: 10.1007/s10659-007-9107-3

Google Scholar

[8] Paul Sicsic and Jean-Jacques Marigo. From gradient damage laws to Griffith's theory of crack propagation. Journal of Elasticity, 113(1): 55-74, (2013).

DOI: 10.1007/s10659-012-9410-5

Google Scholar

[9] Paul Sicsic, Jean-Jacques Marigo, and Corrado Maurini. Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling. Journal of the Mechanics and Physics of Solids, 63: 256-284, (2014).

DOI: 10.1016/j.jmps.2013.09.003

Google Scholar

[10] Blaise Bourdin, Jean-Jacques Marigo, Corrado Maurini, and Paul Sicsic. Morphogenesis and propagation of complex cracks induced by thermal shocks. Physical review letters, 112(1): 014301, (2014).

DOI: 10.1103/physrevlett.112.014301

Google Scholar

[11] A. Mesgarnejad, B. Bourdin, and M.M. Khonsari. A variational approach to the fracture of brittle thin films subject to out-of-plane loading. Journal of the Mechanics and Physics of Solids, 61(11): 2360-2379, (2013).

DOI: 10.1016/j.jmps.2013.05.001

Google Scholar

[12] A.A. León Baldelli, J. -F. Babadjian, B. Bourdin, D. Henao, and C. Maurini. A variational model for fracture and debonding of thin films under in-plane loadings. Journal of the Mechanics and Physics of Solids, 70: 320-348, (2014).

DOI: 10.1016/j.jmps.2014.05.020

Google Scholar

[13] Gilles A. Francfort and Jean-Jacques Marigo. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46(8): 1319-1342, (1998).

DOI: 10.1016/s0022-5096(98)00034-9

Google Scholar

[14] Michael J. Borden, Clemens V. Verhoosel, Michael A. Scott, Thomas J.R. Hughes, and Chad M. Landis. A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 217-220(0): 77-95, (2012).

DOI: 10.1016/j.cma.2012.01.008

Google Scholar

[15] Martina Hofacker and Christian Miehe. Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. International Journal of Fracture, 178(1-2): 113-129, (2012).

DOI: 10.1007/s10704-012-9753-8

Google Scholar

[16] Alexander Schlüter, Adrian Willenbücher, Charlotte Kuhn, and Ralf Müller. Phase field approximation of dynamic brittle fracture. Computational Mechanics, 54(5): 1141-1161, (2014).

DOI: 10.1007/s00466-014-1045-x

Google Scholar

[17] Gianpietro Del Piero, Giovanni Lancioni, and Riccardo March. A variational model for fracture mechanics: Numerical experiments. Journal of the Mechanics and Physics of Solids, 55(12): 2513-2537, (2007).

DOI: 10.1016/j.jmps.2007.04.011

Google Scholar

[18] Kim Pham and Jean-Jacques Marigo. Damage localization and rupture with gradient damage models. Frattura ed Integrità Strutturale, 19: 5-19, (2012).

DOI: 10.3221/igf-esis.19.01

Google Scholar

[19] Kim Pham and Jean-Jacques Marigo. From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Continuum Mechanics and Thermodynamics, 25(2-4): 147-171, (2013).

DOI: 10.1007/s00161-011-0228-3

Google Scholar

[20] Kim Pham and Jean-Jacques Marigo. Stability of homogeneous states with gradient damage models: size effects and shape effects in the three-dimensional setting. Journal of Elasticity, 110(1): 63-93, (2013).

DOI: 10.1007/s10659-012-9382-5

Google Scholar

[21] Kim Pham, Jean-Jacques Marigo, and Corrado Maurini. The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. Journal of the Mechanics and Physics of Solids, 59(6): 1163-1190, (2011).

DOI: 10.1016/j.jmps.2011.03.010

Google Scholar

[22] B. Bourdin, C. J. Larsen, and C. L. Richardson . A time-discrete model for dynamic fracture based on crack regularization. International Journal of Fracture, 168(2): 133-143, (2011).

DOI: 10.1007/s10704-010-9562-x

Google Scholar

[23] J. Moré and G. Toraldo. On the Solution of Large Quadratic Programming Problems with Bound Constraints. SIAM Journal on Optimization, 1(1): 93-113, (1991).

DOI: 10.1137/0801008

Google Scholar

[24] Christopher J. Larsen, Christoph Ortner, and Endre Süli. Existence of Solutions to a Regularized Model of Dynamic Fracture. Mathematical Models and Methods in Applied Sciences, 20(7): 1021-1048, (2010).

DOI: 10.1142/s0218202510004520

Google Scholar

[25] P. -E. Dumouchel, J. -J. Marigo, and M. Charlotte. Dynamic fracture: an example of convergence towards a discontinuous quasistatic solution. Continuum Mechanics and Thermodynamics, 20(1): 1-19, (2008).

DOI: 10.1007/s00161-008-0071-3

Google Scholar

[26] L. B. Freund. Dynamic Fracture Mechanics. Cambridge University Press, (1998).

Google Scholar

[27] P. Destuynder and M. Djaoua. Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile. Mathematical Methods in the Applied Sciences, 3(1): 70-87, (1981).

DOI: 10.1002/mma.1670030106

Google Scholar

[28] Henrique Versieux. A relation between a dynamic fracture model and quasi-static evolution. Preprints, (2014).

Google Scholar

[29] Jeong-Hoon Song, Hongwu Wang, and Ted Belytschko. A comparative study on finite element methods for dynamic fracture. Computational Mechanics, 42(2): 239-250, (2008).

DOI: 10.1007/s00466-007-0210-x

Google Scholar