Correlation between Anthocyanins, Total Phenolics Content and Antioxidant Activity of Purple Corn (Zea mays L.)

Article Preview

Abstract:

Six purple corn grains were chosen to investigate their antioxidant activities and the relationships between anthocyanins and phenolics contents with antioxidant activities. Purple grains were screened for their antioxidant potentials using various in-vitro models such as superoxide anion radical scavenging activity and reducing power at various concentrations. The result showed that ZS39 and FS11 exhibited the highest anthocyanins and total phenolics contents. ZS39 and FS11 also exhibited the highest superoxide anion radical scavenging activity. There was no significant difference among the reducing power of six different purple corn grain extracts. It was found that there were positive correlations between anthocyanins and superoxide anion radical scavenging activity or reducing power, R2=0.9911, R2=0.9873, respectively. Whereas the correlations between total phenolics and superoxide anion radical scavenging activity or reducing power, R2=0.9863, R2=0.9826, respectively. It suggested that purple corn appeared to be a rich and interesting source of natural antioxidants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-226

Citation:

Online since:

September 2014

Export:

Price:

* - Corresponding Author

[1] M. Zhu, Y.X. Ge, F.H. Li, Z.B. Wang, H.W. Wang and Z.S. Shi: Afr J Agr Res vol. 2820-2827 (2011), p.6.

Google Scholar

[2] K.D.R. Setchell and C. Aedin: J Nutr vol. 758-767 (1999), p.129.

Google Scholar

[3] B.N. Ames, M.K. Shigenaga and T.M. Hagen: P Natl Acad Sci USA vol. 7915-7922 (1993) p.90.

Google Scholar

[4] T. Tsuda, F. Horio, K. Uchida, H. Aoki and T. Osawa: Nutri-Gene Interactions vol. 2125-2130(2003) p.133.

Google Scholar

[5] Z. Maksimovic, D. Malencic and N. Kovacevic: Bioresource Technol vol. 873-877 (2005) p.96.

Google Scholar

[6] L. Rondini, M. Peyra-Maillard, A. Marsser-Baglieri and C. Berset: J Agr Food Chem vol. 3037-3041(2002) p.50.

Google Scholar

[7] T. Fuleki: J Food Sci vol. 72-77 (1968) p.33.

Google Scholar

[8] C.Q. Wu, F. Chen and X. Wang: Food Chem vol. 220-227 (2006) p.96.

Google Scholar

[9] A. Djeridane, M. Yousfi and B. Nadjemi : Food Chem vol. 654-660 (2006) p.97.

Google Scholar

[10] T.Y. Jing and X.Y. Zhao: Prog Biochem Biophys vol. 84-86 (1995) p.22.

Google Scholar

[11] P. Siddhuraju, P.S. Mohan and K. Becker: Food Chem vol. 61-69 (2002) p.79.

Google Scholar

[12] P. Prieto, M. Pineda and M. Aguilar: Anal Biochem vol. 337-341 (1999) p.269.

Google Scholar

[13] Y. Pan, K. Wang, S. Huang, H. Wang, X. Mu and C. He: Food Chem vol. 1264-1270 (2008) p.106.

Google Scholar

[14] A. Amin and R. Yazdanparast : Food Chem vol. 21-29 (2007) p.104.

Google Scholar

[15] K.K. Adom and R.H. Liu: LWT-Food Sci Technol vol. 1187-1192 (2009) p.42.

Google Scholar

[16] D.U. H Pin-Der: J. American Oil Chem. Society vol. 455-461 (1998) p.75.

Google Scholar

[17] S. Gupta and J. Prakash: Plant Food Hum Nutr vol. 39-45 (2009) p.64.

Google Scholar

[18] K. Nagendra-Prasad, B. Yang, X.H. Dong, G.X. Jiang, H.Y. Zhang, H.H. Xie and Y.M. Jiang: Innov Food Sci Emerg vol. 627-632 (2009) p.10.

Google Scholar

[19] X. Duan, G. Wu and Y. Jiang: Molecules vol. 759-771 (2007) p.12.

Google Scholar

[20] I. Bravo: Nutr Rev vol. 317-333 (1998) p.56.

Google Scholar

[21] W. Kalt and D. Dufour: Hortic Technol vol. 216-221 (1997) p.7.

Google Scholar

[22] Wang LS and Stoner GD: Cancer Lett vol. 281-290 (2008) p.269.

Google Scholar

[23] C.A. Rice-Evans, N.J. Miller and G. Paganga: Free Radical Bio Med vol. 933-956 (1996) p.20.

Google Scholar

[24] E.J. Liens, S. Ren, H.H. Bui and R. Wang: Free Radical Bio Med vol. 285-294 (1999) p.26.

Google Scholar