Crystal Plasticity Simulation of the Bauschinger Effect of Polycrystalline AA7075 through a Texture-Based Representative Volume Element Model

Article Preview

Abstract:

A texture-based representative volume element (TBRVE) model is developed for the three-dimensional crystal plasticity (CP) finite element simulations of the Bauschinger effect (BE) of polycrystalline aluminium alloy 7075 (AA7075). In the simulations, the grain morphology is created using the Voronoi tessellation method with the material texture systematically discretised from experiment. A modified CP constitutive model, which takes into account the backstress, is used to simulate the BE during cyclic loading. The model parameters are calibrated using the first cycle stress-strain curve and used to predict the mechanical response to the cyclic saturation of AA7075. The results indicate that the proposed TBRVE CP finite element model can effectively capture the BE at the grain level.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-27

Citation:

Online since:

May 2014

Export:

Price:

* - Corresponding Author

[1] S.N. Buckley, K.M. Entwistle, The Bauschinger effect in super-pure aluminum single crystals and polycrystals, Acta. Metall., 4 (1956) 352-361.

DOI: 10.1016/0001-6160(56)90023-2

Google Scholar

[2] M.G. Stout, A.D. Rollett, Large-strain Bauschinger effects in FCC metals and alloys, Metall. Trans. A, 21 (1990) 3201-3213.

DOI: 10.1007/bf02647315

Google Scholar

[3] G.J. Weng, Constitutive-equations of single-crystals and polycrystalline aggregates under cyclic loading, Int. J. Eng. Sci., 18 (1980) 1385-1397.

DOI: 10.1016/0020-7225(80)90095-6

Google Scholar

[4] A.S. Nowick, E.S. Machlin, Dislocation theory as applied by NACA to the creep of metals, J. Appl. Phys., 18 (1947) 79-87.

Google Scholar

[5] G.Z. Voyiadjis, P.I. Kattan, Phenomenological evolution-equations for the backstress and spin tensors, Acta Mech., 88 (1991) 91-111.

DOI: 10.1007/bf01170595

Google Scholar

[6] B.Q. Xu, Y.Y. Jiang, A cyclic plasticity model for single crystals, Int. J. Plasticity., 20 (2004) 2161-2178.

DOI: 10.1016/j.ijplas.2004.05.003

Google Scholar

[7] C.O. Frederick, P.J. Armstrong, A mathematical representation of the multiaxial Bauschinger effect, Mater. High Temp., 24 (2007) 11-26.

DOI: 10.3184/096034007x207589

Google Scholar

[8] F. Barlat, J.J. Gracio, M. -G. Lee, E.F. Rauch, G. Vincze, An alternative to kinematic hardening in classical plasticity, Int. J. Plasticity., 27 (2011) 1309-1327.

DOI: 10.1016/j.ijplas.2011.03.003

Google Scholar

[9] A.P. Brahme, K. Inal, R.K. Mishra, S. Saimoto, The backstress effect of evolving deformation boundaries in FCC polycrystals, Int. J. Plasticity., 27 (2011) 1252-1266.

DOI: 10.1016/j.ijplas.2011.02.006

Google Scholar

[10] G.J. Weng, Kinematic hardening rule in single-crystals, Int. J. Solids. Struct., 15 (1979) 861-870.

DOI: 10.1016/0020-7683(79)90055-6

Google Scholar

[11] A.S. Khan, P. Cheng, An anisotropic elastic-plastic constitutive model for single and polycrystalline metals . 1. Theoretical developments, Int. J. Plasticity., 12 (1996) 147-162.

DOI: 10.1016/s0749-6419(96)00001-0

Google Scholar

[12] C.H. Goh, R.W. Neu, D.L. McDowell, Crystallographic plasticity in fretting of Ti-6AL-4V, Int. J. Plasticity., 19 (2003) 1627-1650.

DOI: 10.1016/s0749-6419(02)00039-6

Google Scholar

[13] S.R. Kalidindi, C.A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals, J. Mech. Phys. Solids., 40 (1992) 537-569.

DOI: 10.1016/0022-5096(92)80003-9

Google Scholar

[14] F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods, WILEY-VCH, (2010).

DOI: 10.1002/9783527631483

Google Scholar

[15] F. Yoshida, A constitutive model of cyclic plasticity, Int. J. Plasticity., 16 (2000) 359-380.

Google Scholar

[16] Y. Li, V. Aubin, C. Rey, P. Bompard, Polycrystalline numerical simulation of variable amplitude loading effects on cyclic plasticity and microcrack initiation in austenitic steel 304L, Int. J. Fatigue., 42 (2012) 71-81.

DOI: 10.1016/j.ijfatigue.2011.07.003

Google Scholar

[17] E. Marin, P. Dawson, On modelling the elasto-viscoplastic response of metals using polycrystal plasticity, Comput. Method. Appl. M, 165 (1998) 1-21.

DOI: 10.1016/s0045-7825(98)00034-6

Google Scholar

[18] E.B. Marin, On the formulation of a crystal plasticity model, in, Sandia National Laboratories, (2006).

Google Scholar

[19] R.J. Asaro, Micromechanics of crystals and polycrystals, Adv. Appl. Mech., 23 (1983) 1-115.

Google Scholar

[20] ABAQUS, Version 6. 10, Hibbit, Karlsson and Sorensen Inc, (2011).

Google Scholar

[21] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids. Struct., 40 (2003) 3647-3679.

DOI: 10.1016/s0020-7683(03)00143-4

Google Scholar

[22] E. Nakamachi, N.N. Tam, H. Morimoto, Multi-scale finite element analyses of sheet metals by using SEM-EBSD measured crystallographic RVE models, Int. J. Plasticity., 23 (2007) 450-489.

DOI: 10.1016/j.ijplas.2006.06.002

Google Scholar

[23] L. Li, L. Shen, G. Proust, C.K.S. Moy, G. Ranzi, A crystal plasticity representative volume element model for simulating nanoindentation of aluminium alloy 2024, Proceedings of the 4th International Conference on Computational Methods, Paper ID 133, (2012).

DOI: 10.1016/j.msea.2013.05.009

Google Scholar

[24] L. Li, L. Shen, G. Proust, C.K.S. Moy, G. Ranzi, Three-dimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024, Mater. Sci. Eng. A, 579 (2013) 41-49.

DOI: 10.1016/j.msea.2013.05.009

Google Scholar

[25] R. Quey, P. Dawson, F. Barbe, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Method. Appl. M, 200 (2011) 1729-1745.

DOI: 10.1016/j.cma.2011.01.002

Google Scholar

[26] F. Bachmann, R. Hielscher, H. Schaeben, Texture Analysis with MTEX - Free and Open Source Software Toolbox, in: H. Klein, R.A. Schwarzer (Eds. ) Texture and Anisotropy of Polycrystals Iii, 2010, pp.63-68.

DOI: 10.4028/www.scientific.net/ssp.160.63

Google Scholar