Synthesize Phosphomolybdic Acid-Doped Polyaniline Microspheres for Catalytic Applications

Article Preview

Abstract:

Polyaniline (PANI) composite have generated great interest in the catalyst field due to the coordinate properties of their component. Herein, PANI-PMo12 composite microspheres were successfully fabricated via a facial oxypolymerization with hydrogen peroxide as oxidant and phosphomolybdic acid (PMo12) as dopant. The PANI-PMo12 microspheres were characterized by SEM, XRD, FTIR and XPS. The concentration of PMo12 had a major effect on the diameter of microsphere. The solvent ethanol also played a critical role in the formation of microspheres. The formation mechanism of the PANI-PMo12 microspheres was proposed. Further, the composite microspheres could be directly used as catalyst and displayed a high conversion and selectivity in the epoxidation of cis-cyclooctene with aqueous H2O2 as an oxidant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-140

Citation:

Online since:

January 2014

Authors:

Export:

Price:

* - Corresponding Author

[1] Izarova, N. V.; Pope, M. T.; Kortz, U., Noble Metals in Polyoxometalates. Angewandte Chemie International Edition 2012, 51 (38), 9492-9510.

DOI: 10.1002/anie.201202750

Google Scholar

[2] Ćirić-Marjanović, G., Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013, 177, 1-47.

DOI: 10.1016/j.synthmet.2013.06.004

Google Scholar

[3] Tran, H. D.; D'Arcy, J. M.; Wang, Y.; Beltramo, P. J.; Strong, V. A.; Kaner, R. B., The oxidation of aniline to produce Polyaniline,: a process yielding many different nanoscale structures. J. Mater. Chem. 2011, 21, 3534-3550.

DOI: 10.1039/c0jm02699a

Google Scholar

[4] Stejskal, J.; Sapurina, I.; Trchová, M., Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35 (12), 1420-1481.

DOI: 10.1016/j.progpolymsci.2010.07.006

Google Scholar

[5] Wan, M., Some Issues Related to Polyaniline Micro-/Nanostructures. Macormol. Rapid Commun. 2009, 30 (12), 963-975.

DOI: 10.1002/marc.200800817

Google Scholar

[6] Papagianni, G. G.; Stergiou, D. V.; Armatas, G. S.; Kanatzidis, M. G.; Prodromidis, M. I., Synthesis, characterization and performance of polyaniline–polyoxometalates (XM12, X=P, Si and M=Mo, W) composites as electrocatalysts of bromates. Sensors and Actuators B: Chemical 2012, 173, 346-353.

DOI: 10.1016/j.snb.2012.07.020

Google Scholar

[7] Nabid, M. R.; Tabatabaei Rezaei, S. J., Polyaniline-supported acid as an efficient and reusable catalyst for a one-pot synthesis of β-acetamido ketones via a four-component condensation reaction. Applied Catalysis A: General 2009, 366 (1), 108-113.

DOI: 10.1016/j.apcata.2009.06.035

Google Scholar

[8] J. Gong, Z. -M. S., R. -S. Wang, L. -Y. Qu, H4PM11VO40-doped (M=W, Mo) polyaniline-synthesis, characterization and catalytic conversion of isopropanol. Synth. Met. 1999, 101, 750.

DOI: 10.1016/s0379-6779(98)01294-6

Google Scholar

[9] L. -Y. Qu, R. -Q. L., J. Peng, Y. -G. Chen, Z. -M. Dai, H3PW11MoO40•2H2O protonated polyaniline -synthesis, characterization and catalytic conversion of isopropanol. Synthetic Metals 1997, 84, 135-136.

DOI: 10.1016/s0379-6779(97)80682-0

Google Scholar

[10] Gómez-Romero, P.; Casañ-Pastor, N.; Lira-Cantú, M., Chemical polymerization of polyaniline and polypyrrole by phosphomolybdic acid in situ formation of hybrid organic-inorganic materials. Solid State Ionics 1997, 101-103, 875-880.

DOI: 10.1016/s0167-2738(97)00222-1

Google Scholar

[11] Trchova, M.; Sedenkova, I.; Konyushenko, E. N.; Stejskal, J.; Holler, P.; Ciric-Marjanovic, G., Evolution of polyaniline nanotubes: the oxidation of aniline in water. J. Phys. Chem. B 2006, 110 (19), 9461-9468.

DOI: 10.1021/jp057528g

Google Scholar

[12] Zheng, W.; Angelopoulos, M.; Epstein, A. J.; MacDiarmid, A. G., Experimental Evidence for Hydrogen Bonding in Polyaniline: Mechanism of Aggregate Formation and Dependency on Oxidation State. Macromolecules 1997, 30, 2953-2955.

DOI: 10.1021/ma9700136

Google Scholar