Arbitrated Quantum Signature Scheme with Message Bits Intertwined

Article Preview

Abstract:

To solve a common problem existing in most of the present arbitrated quantum signature (AQS) protocols, a new AQS scheme is proposed, in which the security is based on both quantum cryptographic techniques and some ideas in classical cryptography. With message bits intertwined in the proposed scheme, an eavesdropper cannot modify the transmitted message for his own benefit. This scheme provides higher security.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-13

Citation:

Online since:

December 2013

Export:

Price:

* - Corresponding Author

[1] C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, System, and Signal Processing, Bangalore (IEEE, New York, 1984), p.175.

Google Scholar

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

Google Scholar

[3] C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

Google Scholar

[4] R. Cleve, D. Gottesman and H. K. Lo, Phys. Rev. Lett 83, 648 (1999).

Google Scholar

[5] M. Hillery, V. Bužek and A. Berthiaume, Phys. Rev. A 59, 1829 (1999).

Google Scholar

[6] G. L. Long and X. S. Liu, Phys. Rev. A 65, 032302 (2002).

Google Scholar

[7] K. Boström and T. Felbinger, Phys. Rev. Lett. 89, 187902 (2002).

Google Scholar

[8] F. G. Deng, G. L. Long and X. S. Liu, Phys. Rev. A 68, 042307 (2003).

Google Scholar

[9] M. Dusek, O. Haderka, M. Hendrych and R. Myska, Phys. Rev. A 60, 149 (1999).

Google Scholar

[10] G. H. Zeng and W. P. Zhang, Phys. Rev. A 61, 022303 (2000).

Google Scholar

[11] G. H. Zeng, W. P. Ma, X. M. Wang, Acta Electron. Sin. 29, 1098 (2001). (in Chinese).

Google Scholar

[12] D. Gottesman and I. L. Chuang, J. ACM 48, 351 (2001).

Google Scholar

[13] G. H. Zeng and C. H. Keitel, Phys. Rev. A 65, 042312 (2002).

Google Scholar

[14] M. Curty and Lütkenhaus, Phys. Rev. A 77, 046301 (2008).

Google Scholar

[15] G. H. Zeng, Phys. Rev. A 78, 016301 (2008).

Google Scholar

[16] Q. Li, W. H. Chan and D. Y. Long, Phys. Rev. A 79, 054307 (2009).

Google Scholar

[17] X. F. Zou and D. W. Qiu, Phys. Rev. A 82, 042325 (2010).

Google Scholar

[18] H. Lee, C. Hong, H. Kim, et al., Phys. Lett. A 321, 295 (2004).

Google Scholar

[19] W. Li, M. Y. Fan and G. W. Wang, Chin. Phys. B 21, 120305 (2012).

Google Scholar

[20] P. W. Shor, in Proc. 35th Annual Symposium on the Foundations of Computer Science (Santa Fe, New Mexico, 1994), p.124.

Google Scholar

[21] L. K. Grover, in Proc. 28th Annual ACM Symposium on Theory of Computing (New York, 1996), p.212.

Google Scholar

[22] H. Buhrman, R. Cleve, J. Watrous and R. Wolf, Phys. Letts. 87, 167902 (2001).

Google Scholar

[23] D. M. Greenberger, M. A. Horne, A. Zeilinger, Bell's Theorem, Quantum Theory, and Conceptions of Universe, edited by M. Kaftos (Kluwer, Dordrecht) (1989); D. M. Greenberger, M. A. Horne, A. Shimony and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).

DOI: 10.1007/978-94-017-0849-4_10

Google Scholar

[24] P. O. Boykin and V. Roychowdhury, Phys. Rev. A 67, 042317 (2003).

Google Scholar

[25] A. Ambainis, M. Mosca, A. Tapp and R. Wolf, in 41st IEEE Symposium on Foundations of Computer Science (FOCS 00) (2000), p.547.

DOI: 10.1109/sfcs.2000.892142

Google Scholar

[26] F. Gao, S. J. Qin, F. Z. Guo and Q. Y. Wen, Phys. Rev. A 84, 022344 (2011).

Google Scholar

[27] J. W. Choi, K. Y. Chang and D. Hong, Phys. Rev. A 84, 062330 (2011).

Google Scholar

[28] H. K. Lo and H. F. Chau, Science 283, 2050 (1999).

Google Scholar

[29] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

Google Scholar

[30] W. Tittle, H. Zbinden and N. Ginsin, Phys. Rev. A 63, 042301 (2001).

Google Scholar