Hydrodynamic and Mass-Transfer Characteristics of Annular Centrifugal Contactors on the Caprolactam Recovery from Waste Liquor

Article Preview

Abstract:

Caprolactam recovery from waste water is an important and challenging problem in industry. In comparison with extraction columns widely applied in the recovery of caprolactam, annular centrifugal contactor is featured by compact structure, convenient maintenance, and high throughput and efficiency with low energy consumption, etc., which have a wide application in industry. The effects of flow ratio, radius of heavy phase weir and the rotational speeds on entrainment, separation capacity and mass transfer efficiency were studied with annular centrifugal contactors for caprolactam recovery. The results show that the caprolactam with 99.99% purity, the maximum separation capacity of 109L and the highest mass transfer efficiency of 99.8% were obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

792-798

Citation:

Online since:

June 2013

Export:

Price:

[1] F. Xie, M. Zhu, J. Liu, C. He: Chin. J. Chem. Eng Vol. 10 (2002), pp.677-680

Google Scholar

[2] T. C. Lo, M. H. I. Baird, C. Hanson: Handbook of Solvent Extraction (John Wiley& Sons, New York 1983).

Google Scholar

[3] M. L. Van Delden, N. J. M. Kuipers, A. B. De Haan: J. Chem. Eng Vol. 49 (2004), pp.1760-1770

Google Scholar

[4] M. W. Davis, E. J. Weber: Ind Eng Chem Res Vol. 52 (1960), p.929

Google Scholar

[5] G. J. Bernstein, D. E. Grodsvenor, J. F. Lenc, N. M. Levitz, ANL-7969 (1973).

Google Scholar

[6] G. J. Bernstein, D. E. Grosvenor, J. F. Lenc, N. M. Levitz: Nucl. Technol Vol. 20 (1973), pp.200-202

Google Scholar

[7] K. T. Klasson, P. A. Taylor, J. F. Walker, S. A. Jones, R. L. Cummins, S.A. Richardson: Sep. Sci. Technol Vol. 40 (2005), pp.453-462

Google Scholar

[8] D. H. Meikrantz, L. L. Macaluso, W. D. Flim, C. J. Heald, G. Mendoza & S. B. Meikrantz: Chemical Engineering Communications Vol. 189 (2002), pp.1629-1639

DOI: 10.1080/00986440214582

Google Scholar

[9] Masaumi Nakahara, Kazunori Nomura: Chemical Engineering Science Vol. 66(2011), pp.740-746

Google Scholar

[10] Jin-Quan Xu, Wu-Hua Duan, Xiu-Zhu Zhou, Jia-Zhen Zhou: Journal of Hazardous Materials Vol. 131 (2006), pp.98-102

Google Scholar

[11] J. Q. Zhu, J. Chen, C. Y. Li, W. Y. Fei: Sep. Purif. Technol Vol. 56 (2007), P. 237-240

Google Scholar

[12] J. F. Birdwell, J. McFarlane, R. D. Hunt, H. M. Luo, D. W. Depaoli, D. L. Schuh, S. Dai: Sep. Sci. Technol Vol. 41 (2006), pp.2205-2223

Google Scholar

[13] D. H. MEIKRANTZ, S. B. MEIKRANTZ , L. L. MACALUSO: Chem. Eng. Commun Vol. 188 (2001), pp.115-127

Google Scholar

[14] G. N. Kraai, B. Schuur, F. van Zwol, H. H. van de Bovenkamp, H .J. Heeres: Chem. Eng. J Vol. 154 (2009), pp.384-389

DOI: 10.1016/j.cej.2009.04.047

Google Scholar

[15] W. H. Duan, C. L. Song, Q. L. Wu, X. Z. Zhou, J. Z. Zhou: Sep. Sci. Technol Vol. 40 (2005), pp.1871-1883

Google Scholar

[16] J. Q. Xu, W. H. Duan, X. Z. Zhou, J. Z. Zhou: J. Hazard. Mater Vol. 131 (2006), pp.98-102

Google Scholar

[17] X. Z. Zhou, J. Z. Zhou, C. Q. Zhang, W. D. Yu: Sep. Sci. Technol Vol. 32 (1997), pp.2705-2713

Google Scholar