The Effect of Compression Temperature and Time on 2D Woven Kenaf Fiber Reinforced Acrylonitrile-Butadiene-Styrene (ABS)

Article Preview

Abstract:

A natural fibre-based composite from woven kenaf was fabricated using hydraulic hot press machine. Plain woven kenaf fabrics were prepared and used as reinforced material with ABS sheet followed by hot press. Woven fabric was treated using sodium hydroxide and being compare with untreated fabric. The effect of the processing temperature and time towards tensile properties of the composite were investigated. Tensile test was carried out to measure the strength of the composite towards the effect of processing temperature and time. The surface morphology of the composite was studied with Scanning Electron Microscope (SEM) and Optical Microscopic. The result shows that woven Kenaf degrade in strength when expose with high temperature and long exposure to the heat. The permeability of woven Kenaf plain fabric does not indicate a good penetration as observed by microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

630-634

Citation:

Online since:

April 2013

Export:

Price:

[1] H.M. Akil, M.F. Omar, A.A.M. Mazuki, S. Safiee, Z.A.M. Ishak, A. Abu Bakar. Kenaf fiber reinforced composite: A review. Material and Design32 (2011) 4107-4121.

DOI: 10.1016/j.matdes.2011.04.008

Google Scholar

[2] Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng 2000; 276/277: 1-24.

DOI: 10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w

Google Scholar

[3] M.M. Davoodi, S.M. Sapuan, D. Ahmad, Aidy Ali, A. Khalina, Mehdi Jonoobi. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Material and Design 31 (2010) 4927-4932.

DOI: 10.1016/j.matdes.2010.05.021

Google Scholar

[4] M. Zampaloni, F. Pourboghrat, S.A. Yankovich, B.N. Rodgers, J. Moore, L.T. Drzal, A.K. Mohanty, M. Misra. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Composites: Part A 38 (2007).

DOI: 10.1016/j.compositesa.2007.01.001

Google Scholar

[5] Chang-Kyu Li, Mi Suk Cho, In Hoi Kim, Youngkwan Lee, Jae Do Nam. Preparation and physical properties of the biocomposite, cellulose diacetate/kenaf fiber sized with poly(vinyl alcohol). Macromolecular research 2010; 18(6): 566-570.

DOI: 10.1007/s13233-010-0611-0

Google Scholar

[6] Brian G. Ayre, Kevin Stevens, Kent D. Chapman, Charles L. Webber III, Koffi L. Dagnon, Nandika A. D'Souza. Viscoelastic properties of kenaf bast fiber in relation to stem age. Textile research journal 2009; 79(II): 973-980.

DOI: 10.1177/0040517508100185

Google Scholar

[7] Kyeongsik Woo, John D. Whitcomb. A post-processor approach for stress analysis of woven textile composites. Composite Science and Technology 60 (2000) 693-704.

DOI: 10.1016/s0266-3538(99)00165-7

Google Scholar

[8] Yeoung Seok Song, Jung Tae Lee, Dong Sun Ji, Myung Wook Kim, Seung Hwan Lee, Jae Ryoun Youn. Viscoelastic and thermal behavior of woven hemp fiber reinforced poly(lactic acid) composites. Composites: Part B 43 (2012) 856-860.

DOI: 10.1016/j.compositesb.2011.10.021

Google Scholar

[9] Bolton AJ. Natural fibers for plastic reinforcement. Mater Technol 1994; 9: 12-20.

Google Scholar

[10] S. Ochi. Mechanical properties of kenaf fibers and kenaf / PLA composites. Mechanics of Materials 2008; 40: 446-452.

DOI: 10.1016/j.mechmat.2007.10.006

Google Scholar

[11] Bledzki AK, Gassan J. Natural fiber reinforced plastics. New York: Marcel Dekker, Inc.: (1997).

Google Scholar

[12] Aji, I.S. Zainudin, E.S. Khalina, A. Sapuan, S.M. Khairul, M.D. Khairul. Thermal property determination of hybridized kenaf / PALF reinforced HDPE composite by thermogravimetric analysis. J Therm Anal Calorim 2011; DOI 10. 1007/s10973-011-1807-z.

DOI: 10.1007/s10973-011-1807-z

Google Scholar

[13] A. Arostegui, M. Sarrionandia, J. Aurrekoetxea, I. Urrutibeascoa. Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrileebutadineestyrene copolymer. Polymer Degradation and Stability 2006; 91: 2768-2774.

DOI: 10.1016/j.polymdegradstab.2006.03.019

Google Scholar

[14] Mei-Ling Xue, Yong-Liang Yu, Hoe H. Chuah, John M. Rhee, Nam Hoon Kim, Joong Hee Lee. Miscibility and Compatibilization of poly(trimethylene-terephthalate)/acrylonitrile-butadine-styrene blends. European Polymer Journal 2007; 43: 3826-3837.

DOI: 10.1016/j.eurpolymj.2007.06.048

Google Scholar

[15] J. Martins, T. Klohn. Dynamic mechanical, thermal, and morphological study of ABS/textile fiber composites. Polym Bull 2010; 64: 497-510.

DOI: 10.1007/s00289-009-0200-6

Google Scholar

[16] Owen R.S. Harper F.J. Mechanical, microscopial and fire retardant studies of ABS polymers. Polym Degrad Stab 1999; 64: 449-455.

DOI: 10.1016/s0141-3910(98)00150-5

Google Scholar