Embedded Micro Inertial Navigation System

Article Preview

Abstract:

This paper presents Embedded Inertial Navigation System designed and manufactured by the Department of Automatic Control and Robotics in Silesian University of Technology, Gliwice, Poland. Designed system is currently one of the smallest in the world. Within it there is implemented INS-GPS loosely coupled data fusion algorithm and point-to-point navigation algorithm. Both the algorithms and the constructed hardware were tested using two unmanned ground vehicles varying in size. Acquired results of those successful tests are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1234-1246

Citation:

Online since:

December 2012

Export:

Price:

[1] Titterton D.H. and Weston J.L. Strapdown inertial navigation technology. Peter Peregrinus, United Kingdom, (1997).

Google Scholar

[2] D.M. Bevly, A. Rekow, B. Parkinson, Comparison of INS vs. carrier-phase DGPS for attitude determination in the control of off-road vehicles, Navigation, Journal of the U.S. Institute of Navigation, vol. 47(4), (2000) 257-265.

DOI: 10.1002/j.2161-4296.2000.tb00219.x

Google Scholar

[3] D. Grejner-Brzezinska, C. Toth, Positioning accuracy of the Airborne Integrated Mapping System, National Technical Meeting of the Institute of Navigation, Long Beach, California, 713-721 (1998) 21-23.

Google Scholar

[4] D. Grejner-Brzezinska, C. Toth, GPS error modeling and OTF ambiguity resolution for high-accuracy GPS/INS integrated system, Journal of Geodesy, 72 (1998) 626-638.

DOI: 10.1007/s001900050202

Google Scholar

[5] J.H. Kwon, C. Jekeli, A new approach for airborne vector gravimetry using GPS/INS, Journal of Geodesy, 74 (2001) 690-700.

DOI: 10.1007/s001900000130

Google Scholar

[6] J. Skaloud, Reducing the GPS Ambiguity Search Space by Including Inertial Data, Proceedings of The Institute of Navigation's ION GPS-98, Alexandria, VA (1998) p.2073–80.

Google Scholar

[7] B. M. Scherzinger, Precise Robust Positioning with Inertial/GPS RTK, Proceedings of The Institute of Navigation's ION GPS-2000, Alexandria, VA (2000) p.155–62.

Google Scholar

[8] B. M. Scherzinger, Robust Inertially-Aided RTK Position Measurement, Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Department of Geomatics Engineering, The University of Calgary (2001).

Google Scholar

[9] R. L. Greenspan, GPS and Inertial Navigation, Global Positioning System: Theory and Applications, Volume II, American Institute of Aeronautics and Astronautics, Washington, DC (1996) p.187–220.

DOI: 10.2514/5.9781600866395.0187.0220

Google Scholar

[10] M. Wei, K. P. Schwarz, A Strapdown Inertial Algorithm Using an Earth-Fixed Cartesian Frame, NAVIGATION, Journal of The Institute of Navigation, Vol. 37, No. 2 (1990) p.153–67.

DOI: 10.1002/j.2161-4296.1990.tb01544.x

Google Scholar

[11] C. Boucher, A. Lahrech, J. C. Noyer, Non-linear filtering for land vehicle navigation with GPS outage, in Proc. IEEE Int. Conf. Syst., Man Cybern., The Hague, The Netherlands (2004) p.1321–1325.

DOI: 10.1109/icsmc.2004.1399808

Google Scholar

[12] C. Hay, Turn, Turn, Turn. Wheel-Speed Dead Reckoning for Vehicle Navigation. Santa Ana, CA: GPS World (2005) p.37–42.

Google Scholar

[13] S. Rezaei, R. Sengupta, Kalman filter based integration of DGPS and vehicle sensors for localization, in Proc. IEEE Int. Conf. Mechatronics Autom., Niagara Falls, ON, Canada ( 2005) p.455–460.

DOI: 10.1109/icma.2005.1626590

Google Scholar

[14] P. A. Boysen H. Zunker, Integryty Hits the Road, Low Cost, High Trust for Mobile Units. Santa Ana, CA: GPS World (2005) p.30–36.

Google Scholar

[15] F. Caron, E. Duflos, D. Pomorski, P. Vanheeghe, GPS/IMU data fusion using multisensory Kalman filtering: introduction of contextual aspects, Information Fusion 7 (2006) p.221–230.

DOI: 10.1016/j.inffus.2004.07.002

Google Scholar

[16] R. G. Brown, P. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley and Sons, 3rd edition.

Google Scholar

[17] M. St-Pierre D. Gingras, Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system, in Proc. IEEE Intell. Veh. Symp., Parma, Italy ( 2004) p.831.

DOI: 10.1109/ivs.2004.1336492

Google Scholar

[18] A. N. Cui, L. Hong, J. R. Layne, A comparison of nonlinear filtering approaches with an application to ground target tracking, Signal Process., vol. 85, no. 8 (2005) p.1469–1492.

DOI: 10.1016/j.sigpro.2005.01.010

Google Scholar

[19] A.T. Alouani, P. Xia, T.R. Rice W.D. Blair On the Optimality of Two-stage State Estimation In the Presence of Random Bias. IEEE Transactions Automatic Control, AC-38 (1993) p.1279–1282.

DOI: 10.1109/9.233168

Google Scholar

[20] A.K. Caglayan, R.E. Lancraft, A Separated Bias Identification and State Estimation Algorithm for Nonlinear Systems. Automatica, 19(5) (1983) p.561–570.

DOI: 10.1016/0005-1098(83)90012-2

Google Scholar

[21] B. Friedland Treatment of bias in recursive filtering. IEEE Transactions Automatic Control, AC-14 (1969) p.359– 367.

DOI: 10.1109/tac.1969.1099223

Google Scholar

[22] H.S. Hong, J.G. Lee, C.G. Park, Performance improvement of in-flight alignment for autonomous vehicle under large initial heading error. IEE Proceedings Radar, Sonar and Navigation, 151(1) (2004) p.57–62.

DOI: 10.1049/ip-rsn:20030698

Google Scholar

[23] C.S. Hsieh, F.C. Chen, Optimal Solution of The Two-stage Kalman Estimator. IEEE Transactions Automatic Control, AC-44 (1999) p.194–199.

DOI: 10.1109/9.739135

Google Scholar

[24] M.N. Ignagni, Separate-Bias Kalman Estimator with Bias State Noise. IEEE Transactions Automatic Control, AC-35 (1990) p.338–341.

DOI: 10.1109/9.50352

Google Scholar

[25] M.N. Ignagni, Optimal and Suboptimal Separate-Bias Kalman Estimator for a Stochastic Bias. IEEE Transactions Automatic Control, AC-45 (2000) p.547–551.

DOI: 10.1109/9.847741

Google Scholar

[26] J.Y. Keller M. Darouach, Optimal Two-stage Kalman Filter in the Presence of Random Bias. Automatica, 33(9) (1997) p.1745–1748.

DOI: 10.1016/s0005-1098(97)00088-5

Google Scholar

[27] K. H. Kim, J. G. Lee, C. G. Park, Adaptive Two-Stage Extended Kalman Filter for a Fault-Tolerant INS-GPS Loosely Coupled System, IEEE Transactions On Aerospace And Electronic Systems, Vol. 45, No. 1, (2009).

DOI: 10.1109/taes.2009.4805268

Google Scholar

[28] K. Skrzypczyk, Behaviour based approach to a synthesis of a mobile vehicle control system, OWD (2002).

Google Scholar