Synthesis and Performance of Dopa-Modified Multiwalled Carbon Nanotubes

Article Preview

Abstract:

The Dopamine-modified multiwalled carbon nanotubes (MWNT-Dopa) were synthesized by chemical reaction between dopamine (Dopa) and multiwalled carbon nanotubes which oxidazed by mixed-acid (MWNT-COOH). The structure of MWNT-Dopa were analyzed by Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric (TG), Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques and the dispersity of MWNT-Dopa were studied by Dispersion stability analyzer. The results show that dopamine has been grafted on multiwalled carbon nanotubes successfully, and a dopamine layer which wraps on the surface of multiwalled nanotubes make multiwalled nanotubes have outstanding dispersity in water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1289-1293

Citation:

Online since:

June 2012

Export:

Price:

[1] F.S. Lu, R.L. Gu, M.J. Meziani, et al, Advances in Bioapplications of carbon nanotubes, Adv. Mater. 21 (2009) 139-152.

Google Scholar

[2] S.H. Lee, J.H. Lim, K.M. Kim, Fabrication of hybrid ladderlike polysilsesquioxane-grafted multiwalled carbon nanotubes, J. Appl. Polym. Sci. 124 (2012) 3792-3798.

DOI: 10.1002/app.35389

Google Scholar

[3] H. Ding, T. Feng, Y.W. Chen, et al, Field emission properties of carbon nanotubes in a stretchable polydimethylsiloxane matrix, Appl. Suf. Sci. 258 (2012) 5191-5194.

DOI: 10.1016/j.apsusc.2012.01.045

Google Scholar

[4] D.F. Wu, T.J. Shi, T. Yang, et al, Electropinning of poly (trime-thylene terephthalate) / carbon nanotube composites, Eur. Polym. J. 47 (2011) 284-293.

Google Scholar

[5] A. Knyazev, L. Louise, M. Veber, et al, Selective adsorption of proteins on Single-Wall carbon nanotubes by using a protective surfactant, Chem. Eur. J. 17 (2011) 14663-14671.

DOI: 10.1002/chem.201101182

Google Scholar

[6] C. Mercader, C. Jaillet, N. Lachman, et al, Sensitivity of carbon nanotubes to the storage of stress in polymers, Macromol. Rapid Commun. 32 (2011) 1993-(1997).

DOI: 10.1002/marc.201100577

Google Scholar

[7] L.A. Girifalco, M. Hodak. R.S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphic potential, Phys. Rev. B 62 (2000) 12104-13110.

DOI: 10.1103/physrevb.62.13104

Google Scholar

[8] T. Lin, V. Bajpai, T. Ji, et al, Chemistry of carbon nanotubes, Aust. J. Vhem. 56 (2003) 635-651.

Google Scholar

[9] H.L. Zeng, C. Gao, D. Yan, Poly(e-caprolactone)-functionalized carbon nanotubes and their biodegradation properties, Adv. Funct. Mater. 16 (2006) 812-818.

DOI: 10.1002/adfm.200500607

Google Scholar

[10] I. Madni, C.Y. Hwang, S.D. Park, et al, Mixed surfactant system for stable suspension of multiwalled carbon nanotubes, Colloidals Surf. A Physicochem. Eng. Aspects. 358 (2010) 101-107.

DOI: 10.1016/j.colsurfa.2010.01.030

Google Scholar

[11] L. Zhang, Y. Hashimoto, T. Taishi, et al, Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes, Appl. Surf. Sci. 257 (2011) 1845-1849.

DOI: 10.1016/j.apsusc.2010.08.106

Google Scholar