Micromechanics-Based Thermo-Mechanical Simulation of SCS-6 Fiber-Reinforced Ti-6Al-7Nb Matrix Nanocomposite

Article Preview

Abstract:

This paper uses a sequential micromechanical method to characterize the thermomechanical properties of a hybrid nanocomposite. It does this by using analytical models (such as the modified rule of mixtures, Tsai-Pagano model, and Schapery model) and numerical models (such as the Finite element model), which are modeled using the commercial software ABAQUS. Investigations are made to determine how the aspect ratio, waviness, and volume fractions of the reinforcement affect the thermo-mechanical performance of the hybrid nanocomposite. It has been shown that adding CNT ESFs to conventional SiC-reinforced titanium alloy composites (TMCs) improves the resulting HTMNC thermo-mechanical properties. It is found that the addition of CNT ESFs to TMCs improves the thermo-mechanical characteristics of the resulting hybrid nanocomposite (i.e., HTMNCs) more in the transverse direction than in the axial direction for all volume fractions of SiC fiber. For instance, it is observed that adding a 2.69% volume fraction of CNT ESFs to the TMCs with a 30% volume fraction of SiC fiber enhances the axial elastic modulus by 2.6% and 2.4% while increasing the transverse elastic modulus by 4.2% and 3.5%, based on the CNT ESFs are straight and wavy. On the other hand, for the same volume fraction of SiC fiber and the addition of 2.69% volume fraction of Straight CNT ESFs, the transverse and axial CTE of the HTMNCs are reduced by 5.33% and 2.53%, respectively. Moreover, when the SiC fiber aspect ratio increases, the axial elastic modulus increases while the transverse elastic modulus exhibits no change. In contrast to the elastic modulus, the CTE increases in the transverse direction while decreasing in the axial direction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1085)

Pages:

43-54

Citation:

Online since:

April 2023

Export:

Price:

* - Corresponding Author

[1] M.K. Hassanzadeh-Aghdam, M.J. Mahmoodi, R. Ansari, H. Mehdipour, Effects of adding CNTs on the thermo-mechanical characteristics of hybrid titanium nanocomposites, Mech. Mater. 131 (2019) 121–135.

DOI: 10.1016/j.mechmat.2019.01.022

Google Scholar

[2] Y. Shida, H. Anada, Role of W, Mo, Nb and Si on Oxidation of TiAl in Air at High Temperatures, Mater. Trans. Jim. 35 (1994) 623–631.

DOI: 10.2320/matertrans1989.35.623

Google Scholar

[3] M.J. Mahmoodi, M.K. Hassanzadeh-Aghdam, R. Ansari, A. Darvizeh, Damage analysis of unidirectional Ti hybrid nanocomposites containing nanoparticles, J. Alloys Compd. 769 (2018) 397–412.

DOI: 10.1016/j.jallcom.2018.07.345

Google Scholar

[4] M.K. Hassanzadeh-Aghdam, R. Ansari, M.J. Mahmoodi, Micromechanical estimation of biaxial thermo-mechanical responses of hybrid fiber-reinforced metal matrix nanocomposites containing carbon nanotubes, Mech. Mater. 119 (2018) 1–15.

DOI: 10.1016/j.mechmat.2018.01.002

Google Scholar

[5] M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84 (2000) 5552–5555.

DOI: 10.1103/physrevlett.84.5552

Google Scholar

[6] S.R. Bakshi, A. Agarwal, An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites, Carbon N. Y. 49 (2011) 533–544.

DOI: 10.1016/j.carbon.2010.09.054

Google Scholar

[7] A.K. Thakur, P. Kumar, J. Srinivas, Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite, IOP Conf. Ser. Mater. Sci. Eng. 115 (2016).

DOI: 10.1088/1757-899x/115/1/012007

Google Scholar

[8] E. Chlebus, B. Kuźnicka, T. Kurzynowski, B. Dybała, Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting, Mater. Charact. 62 (2011) 488–495.

DOI: 10.1016/j.matchar.2011.03.006

Google Scholar

[9] I. Sridhar, K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites, J. Mater. Sci. 44 (2009) 1750–1756.

DOI: 10.1007/s10853-009-3290-5

Google Scholar

[10] G. Chai, Y. Sun, J. Sun, Q. Chen, Mechanical properties of carbon nanotube-copper nanocomposites, J. Micromechanics Microengineering. 18 (2008) 1-4.

DOI: 10.1088/0960-1317/18/3/035013

Google Scholar

[11] S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite, Compos. Part A Appl. Sci. Manuf. 48 (2013) 57–66.

DOI: 10.1016/j.compositesa.2012.12.005

Google Scholar

[12] K.S. Munir, Y. Zheng, D. Zhang, J. Lin, Y. Li, C. Wen, Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites, Mater. Sci. Eng. A. 696 (2017)10-25.

DOI: 10.1016/j.msea.2017.04.026

Google Scholar

[13] Z. Wang, Y. Yuan, Micromechanics-based modeling of elastic modulus and coefficient of thermal expansion for CNT-metal nanocomposites: effects of waviness, clustering and aluminum carbide layer, Int. J. Mech. Mater. Des. 16 (2020) 783–799.

DOI: 10.1007/s10999-020-09503-z

Google Scholar

[14] M. Rouway, M. Nachtane, M. Tarfaoui, N. Chakhchaoui, L.E.H. Omari, F. Fraija, O. Cherkaoui, Mechanical properties of a biocomposite based on carbon nanotube and graphene nanoplatelet reinforced polymers: Analytical and numerical study, J. Compos. Sci. 5 (2021) 1-22.

DOI: 10.3390/jcs5090234

Google Scholar

[15] K. K. Saxena and A. Lal, Comparative molecular dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects, Procedia Eng. 38 (2012) 2347–2355.

DOI: 10.1016/j.proeng.2012.06.280

Google Scholar

[16] A. Merneedi, L. Natrayan, S. Kaliappan, D. Veeman, S. Angalaeswari, C. Srinivas, P. Paramasivam, Experimental Investigation on Mechanical Properties of Carbon Nanotube-Reinforced Epoxy Composites for Automobile Application, J. Nanomater. 1 (2021)1-7.

DOI: 10.1155/2021/4937059

Google Scholar

[17] G.M. Odegard, T.S. Gates, L.M. Nicholson, K.E. Wise, Equivalent-continuum modeling of nano-structured materials, 62 (2002) 1869–1880.

DOI: 10.1016/s0266-3538(02)00113-6

Google Scholar

[18] C. Wu, C. Chou, C. Han, and K. Chiang, Numerical simulation of the Mechanical Properties of Carbon Nanotube using the Atomistic-Continuom Mechanics, Ens' 06 (2006) 936–945.

Google Scholar

[19] D. M. Luo, W. S. Fu, H. Yang, and Y. L. Zhou, Equivalent continuum models for the simulation of mechanical properties of carbon nanotube by global-local homogenization method, Adv. Mater. Res. 97–101 (2010) 2167–2170.

DOI: 10.4028/www.scientific.net/amr.97-101.2167

Google Scholar

[20] M. M. Shokrieh and R. Rafiee, Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Mater. Des. 31 (2010) 790–795.

DOI: 10.1016/j.matdes.2009.07.058

Google Scholar

[21] X. Ma, F. Scarpa, H.X. Peng, G. Allegri, J. Yuan, R. Ciobanu, Design of a hybrid carbon fibre/carbon nanotube composite for enhanced lightning strike resistance, Aerosp. Sci. Technol. 47 (2015) 367–377.

DOI: 10.1016/j.ast.2015.10.002

Google Scholar

[22] M. Loos, Fundamentals of Polymer Matrix Composites Containing CNTs CNR Polym. Sci. Technol.(2015) 125-70.

Google Scholar

[23] Alamusi, N. Hu, J. Qiu, Y. Li, C. Chang, S. Atobe, H. Fukunaga, Y. Liu, H. Ning, L. Wu, J. Li, W. Yuan, T. Watanabe, C. Yan, Y. Zhang, Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites, Nanoscale Res. Lett. 8 (2013) 1–8.

DOI: 10.1186/1556-276x-8-15

Google Scholar

[24] N. Srisuk, A micromechanics model of thermal expansion coefficient in fiber reinforced composites, The University of Texas at Arlington, thesis (2010) 1-94.

Google Scholar

[25] ABAQUS/Standard ABAQUS scripting/analysis user's manual, Ver. 6.12-3. RI: ABAQUS Inc, (2012).

Google Scholar

[26] S. Guo, C. Hu, H. Gao, Y. Tanaka, Y. Kagawa, SiC(SCS-6) fiber-reinforced Ti3AlC2 matrix composites: Interfacial characterization and mechanical behavior, J. Eur. Ceram. Soc. 35 (2015) 1375–1384.

DOI: 10.1016/j.jeurceramsoc.2014.11.034

Google Scholar

[27] L. Qi, W. Tian, J. Zhou, Numerical evaluation of effective elastic properties of composites reinforced by spatially randomly distributed short fibers with certain aspect ratio, Compos. Struct. 131 (2015) 843–851.

DOI: 10.1016/j.compstruct.2015.06.045

Google Scholar

[28] Z. Ran, Y. Yan, J. Li, Z. Qi, L. Yang, Determination of thermal expansion coefficients for unidirectional fiber-reinforced composites, Chinese J. Aeronaut. 27 (2014) 1180–1187.

DOI: 10.1016/j.cja.2014.03.010

Google Scholar

[29] S. Mall, P.G. Ermer, Thermal Fatigue Behavior of a Unidirectional SCS6/Ti-15–3 Metal Matrix Composite, J. Compos. Mater. 25 (1991) 1668–1686.

DOI: 10.1177/002199839102501207

Google Scholar

[30] E. Chlebus, B. Kuźnicka, T. Kurzynowski, B. Dybała, Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting, Mater. Charact. 62 (2011) 488–495.

DOI: 10.1016/j.matchar.2011.03.006

Google Scholar

[31] P. Kumar, J. Srinivas, Numerical evaluation of effective elastic properties of CNT-reinforced polymers for interphase effects, Comput. Mater. Sci. 88 (2014) 139–144.

DOI: 10.1016/j.commatsci.2014.03.002

Google Scholar

[32] M.J. Mahmoodi, M.M. Aghdam, Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading-A micromechanical approach, Mater. Sci. Eng. A. 528 (2011) 7983–7990.

DOI: 10.1016/j.msea.2011.07.033

Google Scholar

[33] K.Y. Lee, K.H. Kim, S.K. Jeoung, S.I. Ju, J.H. Shim, N.H. Kim, S.G. Lee, S.M. Lee, J.K. Lee, D.R. Paul, Thermal expansion behavior of composites based on axisymmetric ellipsoidal particles, Polymer (Guildf). 48 (2007) 4174–4183.

DOI: 10.1016/j.polymer.2007.05.036

Google Scholar