Effect of Morphology on the Permeability of CO2 Across PSF/FCTF-1 Mixed Matrix Membranes

Article Preview

Abstract:

This reaserch examines different analytical models based on the ideal case membrane structure that can use to evaluate gas penetration into mixed-matrix membranes (MMMs) loaded with non-partial fillers. Many models predicted CO2 permeance over PSF/FCTF-1(MMMs) and were compared to experimental results. The models were compared using standard criteria for validating models, such as the difference in penetrant permeability between the two phases ( and the absolute average relative error percentage. A comparison of those models was carried out based on the widely used model validation criteria, including a convenient measure of penetrant permeability difference between the two phases and absolute average relative error percent. Based on the typical values of morphological characteristics, it was determined that the following models fitted the data in the best order: Lewis‐Nielsen model< Pal model<Higuchi< Bruggeman model< Chiew and Gland < Maxwell model having AARE% values of 6.79, 8.45, 8.53, 10.23, 13.10, and 14.33, respectively. A scanning electron microscopy (SEM) examination of the cross-sectional image confirmed that the fillers were really ellipsoids scattered inside the matrix. The Maxwell-Wagner-Sillar model and the Lewis-Nielsen model were then used to evaluate the prolate effect, and the optimization curves of maximum packing () and shape factor (n) produced the least deviations. The AAR% variation was determined to be in the order of 0.01n 0.3, indicating the significance of the shape factor parameter in determining the accurate CO2 permeance. Key words: polysulfone, Mixed matrix membrane, the permeability of CO2, theoretical models

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-173

Citation:

Online since:

April 2023

Export:

Price:

[1] L. M. Robeson, "The upper bound revisited," J. Memb. Sci., vol. 320, no. 1–2, p.390–400, 2008.

DOI: 10.1016/j.memsci.2008.04.030

Google Scholar

[2] K. Farahdila et al., "Challenges in Membrane Process for Gas Separation from Natural Gas," J. Appl. Membr. Sci. Technol., vol. 25, no. 2, p.89–105, 2021.

DOI: 10.11113/amst.v25n2.222

Google Scholar

[3] R. W. Baker and B. T. Low, "Gas separation membrane materials: A perspective," Macromolecules, vol. 47, no. 20, p.6999–7013, 2014.

DOI: 10.1021/ma501488s

Google Scholar

[4] L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review," Desalination, vol. 308, p.15–33, 2013.

DOI: 10.1016/j.desal.2010.11.033

Google Scholar

[5] A. Hayek, Y. A. Shalabi, and A. Alsamah, "Sour mixed-gas upper bounds of glassy polymeric membranes," Sep. Purif. Technol., vol. 277, no. June, p.119535, 2021, doi: 10.1016/j.seppur. 2021.119535.

DOI: 10.1016/j.seppur.2021.119535

Google Scholar

[6] M. Galizia, W. S. Chi, Z. P. Smith, T. C. Merkel, R. W. Baker, and B. D. Freeman, "50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities," Macromolecules, vol. 50, no. 20, p.7809–7843, 2017.

DOI: 10.1021/acs.macromol.7b01718

Google Scholar

[7] B. Samiey, C. H. Cheng, and J. Wu, "Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: A review," Materials (Basel)., vol. 7, no. 2, p.673–726, 2014.

DOI: 10.3390/ma7020673

Google Scholar

[8] H. Vinh-Thang and S. Kaliaguine, "Predictive models for mixed-matrix membrane performance: A review," Chem. Rev., vol. 113, no. 7, p.4980–5028, 2013.

DOI: 10.1021/cr3003888

Google Scholar

[9] K. Mohammad Gheimasi, T. Mohammadi, and O. Bakhtiari, "Modification of ideal MMMs permeation prediction models: Effects of partial pore blockage and polymer chain rigidification," J. Memb. Sci., vol. 427, p.399–410, 2013.

DOI: 10.1016/j.memsci.2012.10.003

Google Scholar

[10] H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, "The chemistry and applications of metal-organic frameworks," Science (80-. )., vol. 341, no. 6149, 2013, doi: 10.1126/ science.1230444.

DOI: 10.1126/science.1230444

Google Scholar

[11] E. Chehrazi, "Theoretical Models for Gas Separation Prediction of Mixed Matrix Membranes : Effects of the Shape Factor of Nano llers and Interface Voids," p.0–21, 2022.

DOI: 10.21203/rs.3.rs-1862670/v1

Google Scholar

[12] S. Bügel, A. Spieß, and C. Janiak, "Covalent triazine framework CTF-fluorene as porous filler material in mixed matrix membranes for CO2/CH4 separation," Microporous Mesoporous Mater., vol. 316, no. February, 2021.

DOI: 10.1016/j.micromeso.2021.110941

Google Scholar

[13] R. Pal, "Permeation models for mixed matrix membranes," J. Colloid Interface Sci., vol. 317, no. 1, p.191–198, 2008.

DOI: 10.1016/j.jcis.2007.09.032

Google Scholar

[14] D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves," J. Memb. Sci., vol. 211, no. 2, p.335–348, 2003.

DOI: 10.1016/s0376-7388(02)00425-8

Google Scholar

[15] R. H. B. Bouma, A. Checchetti, G. Chidichimo, and E. Drioli, "Permeation through a heterogeneous membrane: The effect of the dispersed phase," J. Memb. Sci., vol. 128, no. 2, p.141–149, 1997.

DOI: 10.1016/S0376-7388(96)00303-1

Google Scholar

[16] G. Bánhegyi, "Comparison of electrical mixture rules for composites," Colloid Polym. Sci., vol. 264, no. 12, p.1030–1050, 1986.

DOI: 10.1007/BF01410321

Google Scholar

[17] L. E. Nielsen, "Thermal conductivity of particulate‐filled polymers," J. Appl. Polym. Sci., vol. 17, no. 12, p.3819–3820, 1973.

DOI: 10.1002/app.1973.070171224

Google Scholar

[18] R. Pal, "New models for thermal conductivity of particulate composites," J. Reinf. Plast. Compos., vol. 26, no. 7, p.643–651, 2007.

DOI: 10.1177/0731684407075569

Google Scholar

[19] Y. C. Chiew and E. D. Glandt, "The effect of structure on the conductivity of a dispersion," J. Colloid Interface Sci., vol. 94, no. 1, p.90–104, 1983.

DOI: 10.1016/0021-9797(83)90238-2

Google Scholar

[20] E. E. Gonzo, M. L. Parentis, and J. C. Gottifredi, "Estimating models for predicting effective permeability of mixed matrix membranes," J. Memb. Sci., vol. 277, no. 1–2, p.46–54, 2006.

DOI: 10.1016/j.memsci.2005.10.007

Google Scholar

[21] T. S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation," Prog. Polym. Sci., vol. 32, no. 4, p.483–507, 2007.

DOI: 10.1016/j.progpolymsci.2007.01.008

Google Scholar

[22] J. H. Petropoulos, "Comparative Study of Approaches Applied To the Permeability of Binary Composite Polymeric Materials.," J. Polym. Sci. Part A-2, Polym. Phys., vol. 23, no. 7, p.1309–1324, 1985.

DOI: 10.1002/pol.1985.180230703

Google Scholar

[23] E. Chehrazi, M. Raef, M. Noroozi, and M. Panahi-Sarmad, "A theoretical model for the gas permeation prediction of nanotube-mixed matrix membranes: Unveiling the effect of interfacial layer," J. Memb. Sci., vol. 570–571, p.168–175, 2019.

DOI: 10.1016/j.memsci.2018.10.038

Google Scholar

[24] T. T. Moore, R. Mahajan, D. Q. Vu, and W. J. Koros, "Hybrid Membrane Materials Comprising Organic Polymers with Rigid Dispersed Phases," AIChE J., vol. 50, no. 2, p.311–321, 2004.

DOI: 10.1002/aic.10029

Google Scholar

[25] "Effect of Aspect Ratio on the Permittivity of Graphite.pdf."

Google Scholar

[26] J. Ahn et al., "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)," J. Memb. Sci., vol. 346, no. 2, p.280–287, 2010.

DOI: 10.1016/j.memsci.2009.09.047

Google Scholar

[27] S. Bügel, A. Spieß, and C. Janiak, "Covalent triazine framework CTF-fluorene as porous filler material in mixed matrix membranes for CO2/CH4 separation," Microporous Mesoporous Mater., vol. 316, no. November 2020, 2021.

DOI: 10.1016/j.micromeso.2021.110941

Google Scholar

[28] S. Wang et al., "Advances in high permeability polymer-based membrane materials for CO2 separations," Energy Environ. Sci., vol. 9, no. 6, p.1863–1890, 2016.

DOI: 10.1039/c6ee00811a

Google Scholar

[29] I. Salahshoori, A. Seyfaee, and A. Babapoor, "Recent advances in synthesis and applications of mixed matrix membranes," Synth. Sinter., vol. 1, no. 1, p.1–27, 2021, doi: 10.53063/synsint.2 021.116.

DOI: 10.53063/synsint.2021.116

Google Scholar