Numerical Investigations on Stresses and Temperature Development of Tool Dies during Hot Forging

Article Preview

Abstract:

Hot-forming tools are subjected to high thermal and mechanical stresses during their application. Therefore, a suitable design of the tool die is important to ensure a long tool life. For this purpose, numerical simulations can be used to calculate the occurring stresses and the temperature development in the tools during the course of a stroke or over several forging cycles. The aim of this research is to investigate the effect of different radii on the resulting stresses in the lower die of the forming tools. Furthermore, the temperature evolution over several cycles is analysed to determine their effect on the temperature. When investigating the stress, it was found that a larger radius leads to a reduction in stresses. In addition, it could be numerically proven that the base temperature of the die levels off after a certain number of cycles. These findings will be used in further research dealing with the service life calculation of dies subjected to thermo-mechanical alternating stresses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

559-568

Citation:

Online since:

July 2022

Export:

* - Corresponding Author

[1] B.-A. Behrens, F. Schäfer, A. Hundertmark, A. Bouguecha, A. Numerical analysis of tool failure in hot forging processes, 17th International Scientific and Technical Conference Design and Technology of Drawpieces and Die Stampings,, Poznan, (2008).

Google Scholar

[2] G. A. Berti, M. Monti, Thermo-mechanical fatigue life assessment of hot forging die steel, Fatigue & Fracture of Engineering Materials & Structures, Vol. 28(11), 2005, pp.1025-1034.

DOI: 10.1111/j.1460-2695.2005.00940.x

Google Scholar

[3] A. Bouguecha, B.-A. Behrens, C. Bonk, D. Rosenbusch, Numerical die life estimation of a crack susceptible industrial hot forging process, AIP Conference Proceedings 1896 (2017) 190012.

DOI: 10.1063/1.5008225

Google Scholar

[4] B.-A. Behrens, A. Bouguecha, T. Hadifi, A. Klassen, Numerical and Experimental Investigation on the Service Life Estimation fot Hot-Forging Dies, Material Forming ESAFORM 2012, Vols. 504-506, pp.163-168.

DOI: 10.4028/www.scientific.net/kem.504-506.163

Google Scholar

[5] B.-A. Behrens, A. Bouguecha, F. Schäfer, T. Hadifi, FEA Based Tool Life Quantity Estimation of Hot forging Dies Under Cyclic Thermo-Mechanical Loads, AIP Conference Proceeding 1315, 303, (2011).

DOI: 10.1063/1.3552459

Google Scholar

[6] A. Jilg, T. Seifert, Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening, Materials Science & Engineering A, Vol. 721, 2018, pp.96-102.

DOI: 10.1016/j.msea.2018.02.048

Google Scholar

[7] A. Vlasov, Thermomechanical fatigue of dies for hot stamping, Steel in Translation, Vol. 46(5), 2016, pp.356-360.

DOI: 10.3103/s0967091216050156

Google Scholar

[8] T. Ø. Pedersen, Numerical modelling of cyclic plasticity and fatigue damage in cold-forging tool, International Journal of Mechanical Sciences, Vol. 42(4), 2000, pp.799-818.

DOI: 10.1016/s0020-7403(99)00019-3

Google Scholar

[9] V. Garat, G. Bernhart, L. Hervy, Influence of design and process parameters on service life of nut hot forging die, Journal of Materials Processing Technology, Vol. 147, 2004, pp.359-369.

DOI: 10.1016/j.jmatprotec.2003.01.002

Google Scholar

[10] R. Neugebauer, C. Hochmuth, G. Schmidt, M. Dix, Energy Efficent Process Planning Based on Numerical Simulations. Advanced Materials Research, Vol. 223, 2011, pp.212-221.

DOI: 10.4028/www.scientific.net/amr.223.212

Google Scholar

[11] P.K. Ajeet Babu, M.R. Saraf, K.C. Vora, S.M. Chaurasiya, P. Kuppan, Influence of Forging Parameters on the Mechanical Behaviour and Hot Forgeability of Aluminium Alloy, Materialstoday: Proceedings, Vol. 2, 2015, pp.3238-3244.

DOI: 10.1016/j.matpr.2015.07.132

Google Scholar

[12] M. Podgrajšek, S. Glodež, Z. Ren, Failure analysis of forging die insert protected with diffusion layer and PVD coating, Surface & Coatings Technology, Vol. 276, 2015, pp.521-528.

DOI: 10.1016/j.surfcoat.2015.06.021

Google Scholar

[13] F. Klocke, Manufacturing Processes 4: Forming, fourth ed., Springer-Verlag, Berlin Heidelberg, (2013).

Google Scholar

[14] M. Plogmeyer, J. Kruse, M. Stonis, N. Paetsch, B.-A. Behrens, Temperature measurement with thin film sensors during warm forging of steel, Microsystem Technologies, Vol. 27, 2021, pp.3841-3850.

DOI: 10.1007/s00542-020-05179-9

Google Scholar

[15] P. Haselbach, A. Natarajan, R.G. Jiwinangun, K. Branner, Comparison of coupled and uncoupled load simulations on a jacket support structure, Energy Procedia, Vol. 35, 2013, pp.244-252.

DOI: 10.1016/j.egypro.2013.07.177

Google Scholar

[16] A. Bouguecha, T. Hadifi, J. Mielke, B.-A. Behrens, Increase of the computational accuracy of hot bulk forming process simulations with improved friction modeling, Mat-wiss. U. Werkstofft., Vol. 43(10), 2012, pp.839-850.

DOI: 10.1002/mawe.201200024

Google Scholar