Synthesis of Fe3O4 /TiO2-S Composite and Its Activity Test as Photocatalyst on the Metanil Yellow Degradation

Article Preview

Abstract:

The synthesis of sulfur-doped titania magnetite composite and its activity as a photocatalyst in the degradation of metanil yellow have been investigated. The variations of sulfur dopan concentration studied were 1%, 3%, 5%, and 7%. The synthesized Fe3O4/TiO2-S composite was characterized using FTIR, XRD, TEM, SEM-EDX, DR-UV, and VSM. The results showed that the Fe3O4/TiO2-S photocatalyst is visible light responsive with magnetic properties. Sulfur dopan concentrations of 1, 3, 5, and 7 (%) had band gap energies of 2.83, 2.81, 2.76, and 2.84 (eV), respectively. The photodegradation results showed that Fe3O4/TiO2-S 5% composite material could degrade metanil yellow in acidic pH at 180 min under visible light irradiation (73.44). The structural stability was observed after three times of photocatalyst reuse. The degradation kinetics of metanil yellow dye followed the pseudo-second order of Ho and McKay's kinetic model, with K values of 0.52 g mg-1min-1 under visible light. This composite has good photodegradation activity for metanil yellow can be applied under visible light and can be reused after use.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-200

Citation:

Online since:

April 2023

Export:

Price:

* - Corresponding Author

[1] Matyszczak, G., Sędkowska, A., and Kuś, S., Comparative degradation of Metanil Yellow in the electro-Fenton process with different catalysts: A simplified kinetic model study, Dyes Pigm. 174(10) (2020).

DOI: 10.1016/j.dyepig.2019.108076

Google Scholar

[2] Ren, G., Han, H., Wang, Y., Liu, S., Zhao, J., Meng, X., and Li, Z., Recent advances of photocatalytic application in water treatment: A review, Nanomater. 11(7) (2021).

Google Scholar

[3] Manchala, S., Elayappan, V., Lee, H. G., and Shanker, V., Plasmonic photocatalysis: An extraordinary way to harvest visible light. In Photocatalytic Systems by Design: Materials, Mechanisms and Applications (Issue January) (2021)

DOI: 10.1016/b978-0-12-820532-7.00015-1

Google Scholar

[4] Sheikhmohammadi, A., Asgari, E., Nourmoradi, H., Fazli, M. M., and Yeganeh, M., Ultrasound-assisted decomposition of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst: Influencing factors and mechanisms, J. Environ. Chem. Eng. 9(5) (2021) 105844.

DOI: 10.1016/j.jece.2021.105844

Google Scholar

[5] Iqbal, A., Ibrahim, N. H., Rahman, N. R. A., Saharudin, K. A., Adam, F., Sreekantan, S., Yusop, R. M., Jaafar, N. F., and Wilson, L. D., ZnO surface doping to ehance the photocatalytic activity of lithium titanate/TiO2 for Methylene Blue photodegradation under visible light irradiation, Surf. 3(3) (2020) 301–318.

DOI: 10.3390/surfaces3030022

Google Scholar

[6] Chu, A. C., Sahu, R. S., Chou, T. H., and Shih, Y. H., Magnetic Fe3O4@TiO2 nanocomposites to degrade bisphenol A, one emerging contaminant, under visible and long wavelength UV light irradiation, J. Environ. Chem. Eng. 9(4) (2021) 105539.

DOI: 10.1016/j.jece.2021.105539

Google Scholar

[7] Khlyustova, A., Sirotkin, N., Kusova, T., Kraev, A., Titov, V., and Agafonov, A., Doped TiO2: The effect of doping elements on photocatalytic activity, Adv. Mater. 1(5) (2020) 1193–1201.

DOI: 10.1039/d0ma00171f

Google Scholar

[8] Yalçin, Y., Kiliç, M., and Çinar, Z., The role of non-metal doping in TiO2 photocatalysis, J. Adv. Oxid. Technol. 13(3) (2010) 281–296.

Google Scholar

[9] Qamaruddin, M., Khan, I., Ajumobi, O. O., Ganiyu, S. A., and Qurashi, A., Sulfur doped ceria-titania (S-CeTiO4−x) nanocomposites for enhanced solar-driven water splitting, J. Sol. Energy. 188(5) (2019) 890–897.

DOI: 10.1016/j.solener.2019.05.058

Google Scholar

[10] Devi, L. G., and Kavitha, R., Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification, Mater. Chem. Phys. 143 (2014) 1300-1308.

DOI: 10.1016/j.matchemphys.2013.11.038

Google Scholar

[11] Kunarti, E. S., Kartini, I., Mardjan, M. I. D., and Prameswari, E. H., Sulfur-doped-titania coated on magnetite as magnetically recoverable photocatalyst for the UV-visible light-assisted-degradation of Congo red solution, Rasayan J. Chem. 14(2) (2021) 1199–1207.

DOI: 10.31788/rjc.2021.1426304

Google Scholar

[12] Basavarajappa, P. S., Patil, S. B., Ganganagappa, N., Reddy, K. R., Raghu, A. V., and Reddy, C. V., Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, Int. J. Hydrog. Energy. 45(13) (2020) 7764–7778.

DOI: 10.1016/j.ijhydene.2019.07.241

Google Scholar

[13] Popa, A., Stefan, M., Toloman, D., Pana, O., Mesaros, A., Leostean, C., Macavei, S., Marincas, O., Suciu, R., and Barbu-Tudoran, L., Fe3O4-TiO2: Gd nanoparticles with enhanced photocatalytic activity and magnetic recyclability, Powder Technol. 325 (2018) 441–451.

DOI: 10.1016/j.powtec.2017.11.049

Google Scholar

[14] Khashan, S., Dagher, S., Tit, N., Alazzam, A., and Obaidat, I., Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles, Surf. Coat. Technol. 322 (2017) 92–98.

DOI: 10.1016/j.surfcoat.2017.05.045

Google Scholar

[15] Almeida, L. A., Habran, M., Carvalho, R. D. S., da Costa, M. E. H. M., Cremona, M., Silva, B. C., Krambrock, K., Pandoli, O. G., Morgado, E., and Marinkovic, B. A., The influence of calcination temperature on photocatalytic activity of TiO2-acetylacetone charge transfer complex towards degradation of Nox under visible light, CAT. 10(12) (2020) 1–18.

DOI: 10.3390/catal10121463

Google Scholar

[16] Lin, Y. H., Hsueh, H. T., Chang, C. W., and Chu, H., The Visible Light-Driven Photodegradation of Dimethyl Sulfide on S-Doped TiO2: Characterization, Kinetics, and Reaction Pathways, Appl. Catal. B., 199 (2016) 1–10.

DOI: 10.1016/j.apcatb.2016.06.024

Google Scholar

[17] Olowoyo, J. O., Kumar, M., Jain, S. L., Shen, S., Zhou, Z., Mao, S. S., Vorontsov, A. V., and Kumar, U., Reinforced Photocatalytic Reduction of CO2 to Fuel by Efficient S-TiO2: Significance of Sulfur Doping, Int. J. Hydrog. Energy, 43(37) (2018) 17682–17695.

DOI: 10.1016/j.ijhydene.2018.07.193

Google Scholar

[18] Cravanzola, S., Cesano, F., Gaziano, F., and Scarano, D., Sulfur-Doped TiO2: Structure and Surface Properties, Catalysts, 7(7) (2017)

DOI: 10.3390/catal7070214

Google Scholar

[19] Bento, R. T., Correa, O. V., and Pillis, M. F., Photocatalytic Activity of Undoped and Sulfur-Doped TiO2 Films Grown by MOCVD for Water Treatment under Visible Light, J. Eur. Ceram. Soc., 39(12) (2019) 3498–3504.

DOI: 10.1016/j.jeurceramsoc.2019.02.046

Google Scholar

[20] Hong, T., Mao, J., Tao, F., and Lan, M., Recyclable magnetic titania nanocomposite from ilmenite with enhanced photocatalytic activity, Molecules, 22(12) (2017)

DOI: 10.3390/molecules22122044

Google Scholar

[21] Gibbs, Z. M., Lalonde, A., and Snyder, G. J., Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy, New J. Phys. 15(7) (2013).

DOI: 10.1088/1367-2630/15/7/075020

Google Scholar

[22] Toor, A. T., Verma, A., Jotshi, C. K., Bajpai, P. K., and Singh, V., Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor, Dyes Pigm. 68(1) (2006) 53–60.

DOI: 10.1016/j.dyepig.2004.12.009

Google Scholar

[23] Kim, Y. S., and Kim, J. G., Improvement of Corrosion Resistance for Low Carbon Steel Pipeline in District Heating Environment Using Transient Oxygen Injection Method, J Ind Eng Chem., 70(October) (2019) 169–177.

DOI: 10.1016/j.jiec.2018.10.011

Google Scholar

[24] Nabavi, N., Peyda, M., and Sadeghi, G., The Photocatalytic Kinetics of the Methyl Orange Degradation in the Aqueous Suspension of Irradiated TiO2, J. Hum. Environ. Health Promot., 2(3) (2017) 154–160.

DOI: 10.29252/jhehp.2.3.154

Google Scholar

[25] Rahmi, Lubis, S., Az-Zahra, N., Puspita, K., and Iqhrammullah, M., Synergetic Photocatalytic and Adsorptive Removals of Metanil Yellow using TiO2/Grass-Derived Cellulose/Chitosan Film Composite, Int. J. Eng. Trans. B: Appl. 34(8) (2021) 1827–1836.

DOI: 10.5829/ije.2021.34.08b.03

Google Scholar