Study of Thermal Behavior of Epoxy Composites Filled with Different Natural Zeolites

Article Preview

Abstract:

One of the ways to enhance thermal stability and reduce the flammability of polymers is the introduction of fillers with flame retardant properties. The paper studies the effect of natural zeolites of the Sakhaptinsk and Shivyrtuysk deposits on the thermal stability and flame retardancy of epoxy composites. The thermal stability of epoxy composites was characterized by thermogravimetric analysis in oxidizing (air) and inert (argon) atmospheres. The parameters of thermo-oxidative degradation and thermal degradation of the samples with a filler concentration of 0, 1, 5, and 10 wt% were studied. Flame retardancy of epoxy composites filled with zeolite was evaluated using the limiting oxygen index. The limiting oxygen index increases with increasing concentration of natural zeolites in the epoxy matrix. The study revealed some differences in the first and second stages of heating the epoxy composites depending on zeolite type and did not reveal significant difference in the thermal behavior of the epoxy composites in the third stage of the heating. Thermal stability and flame retardant properties are more dependent on the zeolite content in the epoxy matrix than zeolite type.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1065)

Pages:

23-33

Citation:

Online since:

June 2022

Export:

Price:

* - Corresponding Author

[1] C.A. May, Epoxy Resins, Chemistry and Technology, 2nd ed., Marcel Dekker Inc., New York, (1988).

Google Scholar

[2] F.-L. Jin, X. Li, S.-J. Park, Synthesis and application of epoxy resins: a review, J. Ind. Eng. Chem. 29 (2015) 1-11.

Google Scholar

[3] P. Wang, L. Xia, R. Jian, Y. Ai, X. Zheng, G. Chen, J. Wang, Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: Preparation, thermal stability, and flame retardance, Polym. Degrad. Stabil. 149 (2018) 69-77.

DOI: 10.1016/j.polymdegradstab.2018.01.026

Google Scholar

[4] K.-C. Cheng, T.-H. Kuo, Flame retardant and mechanical properties of epoxy composites with ammonium polyphosphate and hyperbranched silicon‐containing polymers, J. Appl. Polym. Sci. 137 (2019) 48857.

DOI: 10.1002/app.48857

Google Scholar

[5] M. Zhi, Q. Liu, H. Chen, X. Chen, S. Feng, and Y. He, Thermal stability and flame retardancy properties of epoxy resin modified with functionalized graphene oxide containing phosphorus and silicon elements, ACS omega 4(6) (2019) 10975.

DOI: 10.1021/acsomega.9b00852

Google Scholar

[6] M. Rakotomalala, S. Wagner, M. Döring, Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications, Materials 3 (2010) 4300-4327.

DOI: 10.3390/ma3084300

Google Scholar

[7] A. Kausar, I. Rafique, Z. Anwar, B. Muhammad, Recent developments in different types of flame retardants and effect on fire retardancy of epoxy composite, Polymer Plast. Technol. Eng. 55 (2016) 1512-1535.

DOI: 10.1080/03602559.2016.1163607

Google Scholar

[8] G.You, H. He, B. Feng, Y.-Y. Tang, Z.-Q. Cheng, F.-F. Fan, Synthesis and application of a novel phosphoryl thiourea-containing flame retardant for epoxy resin, Chem. Pap. 74 (2020) 2403-2414.

DOI: 10.1007/s11696-020-01086-5

Google Scholar

[9] D.W. Breck, Zeolite Molecular Sieves: structure, chemistry, and use, John Wiley & Sons, New York, (1974).

Google Scholar

[10] J. Čejka, H. van Bekkum, A. Corma, F. Schüth, Introduction to Zeolite Science and Practice, 3rd ed., Elsevier, Amsterdam, (2007).

DOI: 10.1016/s0167-2991(07)80788-9

Google Scholar

[11] C.J. Rhodes, Electric fields in zeolites: fundamental features and environmental implications, Chem. Pap. 70 (2016) 4-21.

Google Scholar

[12] T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, J. Kandasamy, R. Naidu, Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies,. Chem. Eng. J. 270 (2015) 393-404.

DOI: 10.1016/j.cej.2015.02.047

Google Scholar

[13] M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen, L. Dong, Q. Zan, R. Li, Heavy metal adsorption with zeolites: The role of hierarchical pore architecture, Chem. Eng. J. 359 (2019) 363-372.

DOI: 10.1016/j.cej.2018.11.087

Google Scholar

[14] H.K. Beyer, G. Borbely, P. Miasnikov, P. Rozsa, A new potential largescale application of zeolites as fire-retardant material, in: H.G. Karge, J. Weitkamp (Eds.), Zeolites as Catalysts, Sorbents and Detergent Builders. Applications and Innovations, Elsevier Science Publishers B.V., Amsterdam, 1989, pp.635-644.

DOI: 10.1016/s0167-2991(08)61018-6

Google Scholar

[15] X. Ni, K. Kuang, X. Wang, G. Liao, A new type of BTP/zeolites nanocomposites as mixed-phase fire suppressant: preparation, characterization, and extinguishing mechanism discussion, J. Fire Sci. 28 (2009) 5-25.

DOI: 10.1177/0734904109340763

Google Scholar

[16] L. Gurchumelia, M. Tsarakhov, S. Tkemaladze, G. Bezarashvili, F. Bejanov, J. Chem. Eng. Process. Technol. 8(4) (2017) 1000357.

Google Scholar

[17] S. Bourbigot, M. Le Bras, R. Delobel, R. Decressain, J.P. Amourex, 4A Zeolite synergistic agent in new flame retardant intumescent formulation of polyethylenic polymers-study of the effect of the constituent monomers, Polym. Degrad. Stabil., 54 (1996) 275-287.

DOI: 10.1016/s0141-3910(96)00055-9

Google Scholar

[18] H. Demir, E. Arkış, D. Balköse, S. Ülkü, Synergistic effect of natural zeolites on flame retardant additives, Polym. Degrad. Stab. 89 (2005) 478-483.

DOI: 10.1016/j.polymdegradstab.2005.01.028

Google Scholar

[19] J. Huang, M. Liang, C. Feng, H. Liu, Synergistic effects of 4A zeolite on the flame‐retardant properties and thermal stability of an efficient halogen‐free flame‐retardant EVA composite, Polym. Eng. Sci. 56 (2016) 380-387.

DOI: 10.1002/pen.24263

Google Scholar

[20] B.V. Suresh Kumar, Siddaramaiah, M.B. Shayan, K.S. Manjula, C. Ranganathaiah, G.V. Narasimha Rao, B. Basavalingu, K. Byrappa, Effect of zeolite particulate filler on the properties of polyurethane composites, J. Polym. Res. 17 (2010) 135-142.

DOI: 10.1007/s10965-009-9299-2

Google Scholar

[21] Z. Katančić, J. Travaš-Sejdić, Z. Hrnjak-Murgić, Flammability and thermal properties of zeolite-filled high-impact polystyrene composites, Polymer Plast. Technol. Eng. 53 (2014) 1487-1493.

DOI: 10.1080/03602559.2014.909484

Google Scholar

[22] M. Pires, M. Murariu, A.M. Cardoso, L. Bonnaud, P. Dubois, Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blending, Polym. Bull. 77 (2020) 2111-2137.

DOI: 10.1007/s00289-019-02846-4

Google Scholar

[23] M.J. Shim, S.W. Kim, Effect of zeolite filler on the cure and thermal characteristics of diglycidyl ether of bisphenol A/4,4'-methylene dianiline system, Polym. J. 30 (1998) 73-77.

DOI: 10.1295/polymj.30.73

Google Scholar

[24] B.C. Erdogan, A.T. Seyhan, Y. Ocak, M. Tanoglu, D. Balköse, S. Ülkü, Cure kinetics of epoxy resin-natural zeolite composites, J. Therm. Anal. Calorim. 94 (2008) 743-747.

DOI: 10.1007/s10973-008-9366-7

Google Scholar

[25] J.R. Ugal, L.M. Hadi, The combined action of zeolite and chlorinated rubber as flame retardants for epoxy resin, J. Baghdad for Sci. 10 (2013) 561-568.

DOI: 10.21123/bsj.10.3.561-568

Google Scholar

[26] D. Matykiewicz, K. Lewandowski, B. Dudziec, Evaluation of thermomechanical properties of epoxy–basalt fibre composites modified with zeolite and silsesquioxane, Compos. Interfaces. 24 (2017) 89-498.

DOI: 10.1080/09276440.2016.1235905

Google Scholar

[27] P.M. Visakh, O.B. Nazarenko, Y.A. Amelkovich, T.V. Melnikova, Effect of zeolite and boric acid on epoxy-based composites, Polym. Adv. Technol. 27 (2016) 1098-1101.

DOI: 10.1002/pat.3776

Google Scholar

[28] O.B. Nazarenko, T.V. Melnikova, P.M. Visakh, Combined effect of zeolite and boric acid on thermal behavior of epoxy composites, J. Therm. Anal. Calorim. 128 (2017) 169-175.

DOI: 10.1007/s10973-016-5901-0

Google Scholar

[29] K.K. Razmakhnin, A.N. Khatkova, Ya.Yu. Blinovskaya, Geological aspects of processing zeolite-containing rocks in Eastern Transbaikalia, IOP Conf. Ser: Earth Environ. Sci. 262 (2019) 012055.

DOI: 10.1088/1755-1315/262/1/012055

Google Scholar

[30] O.B. Nazarenko, R.F. Zarubina, N.S. Volochova, Application of sakhaptinsk zeolite for ground water treatment, International Forum on Strategic Technology 2010, Ulsan, 2010, pp.267-270.

DOI: 10.1109/ifost.2010.5668032

Google Scholar

[31] Y. Murashkina, O. Nazarenko, Characterization of shivirtui zeolite modified with aluminum oxyhydroxide nanofibers, Mater. Sci. Forum 942 (2019) 40-49.

DOI: 10.4028/www.scientific.net/msf.942.40

Google Scholar

[32] T.A.B. Prasetyo, B. Soegijono, Characterization of sonicated natural zeolite/ferric chloride hexahydrate by infrared spectroscopy, J. Phys: Conf. Ser. 985 (2018) 012022.

DOI: 10.1088/1742-6596/985/1/012022

Google Scholar

[33] M.B.Z. Gili, F.A. Pares, A.L.G. Nery, N.R.D. Guillermo, E.J. Marquez, E.M. Olegario, Changes in the structure, crystallinity, morphology and adsorption property of gamma-irradiated Philippine natural zeolites, Mater. Res. Express 6 (2019) 125552.

DOI: 10.1088/2053-1591/ab6c8b

Google Scholar

[34] Ö.Ç. Duvarci, Y. Akdeniz, F. Özmihçi, S. Ülkü, D. Balköse, M. Çiftçioğlu, Thermal behaviour of a zeolitic tuff, Ceram. Int., 33 (2007) 795-801.

DOI: 10.1016/j.ceramint.2006.01.003

Google Scholar

[35] B.E. Alver, M. Sakizci, E. Yörükoğullari, Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study, J. Therm. Anal. Calorim. 100 (2010) 19-26.

DOI: 10.1007/s10973-009-0118-0

Google Scholar

[36] V. Bellenger, E. Fontaine, A. Fleishmann, J. Saporito, J. Verdu, Thermogravimetric study of amine cross-linked epoxies, Polym. Degrad. Stab. 9 (1984) 195-208.

DOI: 10.1016/0141-3910(84)90049-1

Google Scholar

[37] N. Grassie, M.I. Guy, N.H. Tennent, Degradation of epoxy polymers. Part 4 – Thermal degradation of bisphenol-diglycidyl ether cured with ethylene diamine, Polym. Degrad. Stab. 14 (1986) 125-37.

DOI: 10.1016/0141-3910(86)90011-x

Google Scholar

[38] S.V. Levchik, E.D. Weil, Thermal decomposition, combustion and flame-retardancy of epoxy resins – a review of the recent literature, Polym. Int. 53 (2004) 1901-1929.

DOI: 10.1002/pi.1473

Google Scholar

[39] B.K. Kandola, B. Biswas, D. Price, A.R. Horrocks, Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin, Polym. Degrad. Stab. 95 (2010) 144-152.

DOI: 10.1016/j.polymdegradstab.2009.11.040

Google Scholar

[40] D.W. Van Krevelen, Some basic aspects of flame resistance of polymeric materials, Polymer 16 (1975) 615-620.

DOI: 10.1016/0032-3861(75)90157-3

Google Scholar

[41] D.W. Van Krevelen, P.J. Hoftyzer, Properties of Polymers, 2nd ed., Elsevier, New York, (1976).

Google Scholar

[42] R. Kotsilkova, Thermoset Nanocomposites for Engineering Applications, Smithers Rapra Publishing, Shropshire, (2007).

Google Scholar