Physical Properties of γ Irradiated TiO2 Nanoparticles

Article Preview

Abstract:

This paper highlights a study on the effects of medium dose gamma (γ) irradiation towards physical properties of TiO2 nanoparticles. Doses applied for gamma irradiation are 60, 100 and 150 kGy. Structural and morphological results show that gamma radiation did not change the crystallinity and shapes of TiO2 nanostructures. Ratio percentages of anatase:rutile for irradiated samples is around 89:11. Agglomerated samples shown in morphology images is support with the existence of binodial shapes peak from particles size distribution analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

414-418

Citation:

Online since:

January 2022

Export:

Price:

* - Corresponding Author

[1] M. Humayun, F. Raziq, A. Khan & W. Luo Modification strategies of TiO2 for potential applications in photocatalysis: a critical review, Green Chem. Let. and Rev. 11:2 (2018), 86-102.

DOI: 10.1080/17518253.2018.1440324

Google Scholar

[2] P. Ribao, J. Corredor, M.J Rivero & I. Ortiz, Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts, J. of Haz. Mater. 372 (2019), 45-51.

DOI: 10.1016/j.jhazmat.2018.05.026

Google Scholar

[3] C.Y. Kuo,.H.K. Jheng & S.E. Syu, Effect of non-metal doping on the photocatalytic activity of titanium dioxide on the photodegradation of aqueous bisphenol A, Environ.Tech. 42 (2021).

DOI: 10.1080/09593330.2019.1674930

Google Scholar

[4] A. Bourezgui, I. Kacem, M. Daoudi & Ahmed F. Al-Hossainy, Influence of Gamma-Irradiation on Structural, Optical and Photocatalytic Performance of TiO2 Nanoparticles Under Controlled Atmospheres, J. of Elec. Mater.  49 (2020),  1904–(1921).

DOI: 10.1007/s11664-019-07887-z

Google Scholar

[5] M. P. Bello Lamo &J. Nowotny, Water purification using solar energy: effect of sulphur on photocatalytic properties of TiO2, Energy Materials, Mater. Sci. and Eng. for Energy Systems 4 (2009), 150-158.

DOI: 10.1179/1748924510y.0000000002

Google Scholar

[6] J.S. Huang, M.H. Wang, J.Z. Ning & G.Y. Li, Application of concentrated TiO2 sols for γ-ray radiation dosimetry, Applied Radiation and Isotopes 54 (2001), 475-481.

DOI: 10.1016/s0969-8043(00)00293-1

Google Scholar

[7] R. Kralchevska, M. Milanova, M. Tsvetkov, D. Dimitrov & D. Todorovsky, Influence of gamma-irradiation on the photocatalytic activity of Degussa P25 TiO2, J Mater Sci  47(2012), 4936–4945.

DOI: 10.1007/s10853-012-6368-4

Google Scholar

[8] F.H. El Batal, M.A. Marzouk & A.M Abdel Ghany, Gamma rays interaction with bismuth borate glasses doped by transition metal ions, J Mater Sci 46 (2011), 5140.

DOI: 10.1007/s10853-011-5445-4

Google Scholar

[9] M.M. Eltabey, I.A. Ali, H.E. Hassan, M.N.H. Comsan Effect of γ-rays irradiation on the structure and magnetic properties of Mg–Cu–Zn ferrites, J Mater Sci 46(2011), 2294.

DOI: 10.1007/s10853-010-5071-6

Google Scholar

[10] J. Jung & M.J. Lee EPR investigation on the efficiency of hydroxyl radical production of gamma-irradiated anatase and bentonit, Water Res. 36 (2011), 3359-3363.

DOI: 10.1016/s0043-1354(02)00038-6

Google Scholar

[11] N. Chitose, S. Ueta, S. Seino & T.A. Yamamoto, Radiolysis of aqueous phenol solutions with nanoparticles. 1. Phenol degradation and TOC removal in solutions containing TiO2 induced by UV, γ-ray and electron beams. Chemosphere 50 (2003), 1007–1013. (d) (c).

DOI: 10.1016/s0045-6535(02)00642-2

Google Scholar