Effect of TiO2 Nanoparticles with High Light Absorption on Improving Growth Parameters and Enzymatic Properties of Sorghum (Sorghum bicolor L. Moench)

Article Preview

Abstract:

AbstractTitanium dioxide nanoparticles are great boosters for better sunlight absorption by plants. However, their band gap is so wide that they can only absorb UV light, which is a small portion of the sunlight. To improve the absorption of visible light, in this work, titanium nanoparticles were sensitized by saffron dye and the effect of foliar application of the dyed nanoparticles on growth parameters and enzymatic properties of sorghum was investigated and the results were compared with those of conventional titanium dioxide nanoparticles. The experiment was conducted in Zabol region, Iran. Saffron, a natural organic dye, was used as a sensitizer because of its availability and high extinction coefficient in the visible regions. To perform sensitization, titanium dioxide nanoparticles were immersed in saffron dye solution to absorb the dye on their surface. Then different concentrations of the sensitized nanoparticles were applied on plants by foliar spraying. The most improved growth parameters including root and shoot lengths, shoot fresh and dry weights, root fresh and dry weights were obtained after application of dye-sensitized TiO2 nanoparticles. Zinc and iron are the elements highly affected by the application of new nanoparticles. Enzyme activities of catalase, ascorbate peroxidase and guaiacol peroxidase were also increased significantly. Chlorophyll a and Chlorophyll a/b ratio showed the highest values in 500 ppm dye-sensitized TiO2 nanoparticles. The obtained results confirm the improvement in growth parameters and enzymatic properties of Sorghum after application of the new TiO2 nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-40

Citation:

Online since:

September 2022

Export:

Price:

* - Corresponding Author

[1] Frewer, L.J., Norde, W., Fischer, A., Kampers, F, Nanotechnology in the Agri-Food Sector: Implications for the Future, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, (2011).

DOI: 10.1002/9783527634798

Google Scholar

[2] Mohammadi, K, Grain oil and fatty acids composition of soybean affected by nano-iron chelate, chemical fertilizers and farmyard manure. Archives Agronomy Soil Science. 61 (2015) 1593-1600.

DOI: 10.1080/03650340.2015.1025763

Google Scholar

[3] Moghaddasi, S., Fotovat, A., Karimzadeh, F., Khazaei, H.R., Khorassani, R., Lakzian, A, Effects of coated and non-coated ZnO nano particles on cucumber seedlings grown in gel chamber. Archives Agronomy Soil Science. 63 (2016) 1108-1120.

DOI: 10.1080/03650340.2016.1256475

Google Scholar

[4] Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F., Wu, C., Ma, Z., Zhou, J., Yang, P, Influences of Nano-TiO2 on the chloroplast aging of spinach under light. Biological Trace Element Research. 104 (2005) 249-260.

DOI: 10.1385/bter:104:3:249

Google Scholar

[5] Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P, Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research. 105 (2005) 269-279.

DOI: 10.1385/bter:105:1-3:269

Google Scholar

[6] Zheng, L., Hong, F., Lu, S., Liu, C, Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research. 104 (2005) 83-91.

DOI: 10.1385/bter:104:1:083

Google Scholar

[7] Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., Yang, P, Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research. 110 (2006) 179-190.

DOI: 10.1385/bter:110:2:179

Google Scholar

[8] Mingyu, S., Fashui, H., Chao, L., Xiao, W., Xiaoqing, L., Liang, C., Fengqing, G., Fan, Y., Zhongrui, L, Effects of Nano-anatase TiO2 on Absorption, Distribution of Light, and Photoreduction Activities of Chloroplast Membrane of Spinach. Biological Trace Element Research. 118 (2007) 120-130.

DOI: 10.1007/s12011-007-0006-z

Google Scholar

[9] Tachibana, Y., Umekita, K., Otsuka, Y., Kuwabata, S, Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer. Journal of Physics D: Applied Physics. 41 (2008) 102002.

DOI: 10.1088/0022-3727/41/10/102002

Google Scholar

[10] Ruffini Castiglione, M., Giorgetti, L., Geri, C., Cremonini, R, The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research. 13 (2011) 2443-2449.

DOI: 10.1007/s11051-010-0135-8

Google Scholar

[11] Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., Fotovat, A, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research. 146 (2012) 101-106.

DOI: 10.1007/s12011-011-9222-7

Google Scholar

[12] Haghighi, M., Teixeira da Silva, J, The effect of N-TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology. 17 (2014) 221-227.

DOI: 10.1007/s12892-014-0056-7

Google Scholar

[13] Dehkourdi, E., Mosavi, M, Effect of Anatase Nanoparticles (TiO2) on Parsley Seed Germination (Petroselinum crispum) In Vitro. Biological Trace Element Research. 155(2013)283-286.

DOI: 10.1007/s12011-013-9788-3

Google Scholar

[14] Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M.R., Vasileios Fotopoulos, V., Kimura, S, Titanium dioxide nanoparticles (TiO 2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 10 (2020) 912-926.

DOI: 10.1038/s41598-020-57794-1

Google Scholar

[15] Kushwah, K.S., Patel, S, Effect of Titanium Dioxide Nanoparticles (TiO2 NPs) on Faba bean (Vicia faba L.) and Induced Asynaptic Mutation: A Meiotic Study. Journal of Plant Growth Regulation. 39 (2020) 1107-1118.

DOI: 10.1007/s00344-019-10046-7

Google Scholar

[16] Yazıcılar B, Böke F, Alaylı A, Nadaroglu H, Gedikli S, Bezirganoglu I. In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. Plant Cell Reports. 40 ( 2021) 29–42.

DOI: 10.1007/s00299-020-02613-0

Google Scholar

[17] Nalci OB, Nadaroglu H, Pour AH, Gungor AA, Haliloglu K. Effects of ZnO, CuO and γ-Fe3O4 nanoparticles on mature embryo culture of wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture. 136 (2019) 269–77.

DOI: 10.1007/s11240-018-1512-8

Google Scholar

[18] Reháková, M., Čuvanová, S., Dzivák, M., Rimár, J., Gaval'ová, Z, Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science. 8 (2004) 397-404.

DOI: 10.1016/j.cossms.2005.04.004

Google Scholar

[19] O'Regan, B., Gratzel, M, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353 (1991) 737-740.

DOI: 10.1038/353737a0

Google Scholar

[20] Zhang, H., Zhou, Y., Zhang, M., Shen, T., Li, Y., Zhu, D, Photoinduced charge separation across colloidal TiO2 and fluorescein derivatives. The Journal of Physical Chemistry B. 106 (2002) 9597-9603.

DOI: 10.1021/jp020335y

Google Scholar

[21] Mir, H., Ahangar, A.G., Mir, N, Superior Performance of Dye-Sensitized versus Conventional TiO2 Nanoparticles for Promoting Germination and early Growth of Barley: From Photovoltaic to Biotechnological Application. Journal of Nano Research. 35 (2016) 77-91.

DOI: 10.4028/www.scientific.net/jnanor.35.77

Google Scholar

[22] Tarantilis, P.A., Tsoupras, G., Polissiou, M, Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. Journal of Chromatography A. 699 (1995) 107-118.

DOI: 10.1016/0021-9673(95)00044-n

Google Scholar

[23] Lozano, P., Castellar, M.R., Simancas, M.J., Iborra, J.L, A quantitative high-performance liquid chromatographic method to analyse commercial saffron (Crocus sativus L.) products. Journal of Chromatography A. 830 (1999) 477-483.

DOI: 10.1016/s0021-9673(98)00938-8

Google Scholar

[24] Caballero-Ortega, H., Pereda-Miranda, R., Abdullaev, F.I, HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chemistry. 100 (2007) 1126-1131.

DOI: 10.1016/j.foodchem.2005.11.020

Google Scholar

[25] Yamazaki, E., Murayama, M., Nishikawa, N., Hashimoto, N., Shoyama, M., Kurita, O, Utilization of natural carotenoids as photosensitizers for dye-sensitized solar cells. Solar Energy. 81 (2007) 512-516.

DOI: 10.1016/j.solener.2006.08.003

Google Scholar

[26] Sobhkhizi, M., Akbari, A., Shotorban, A., Shokoee, M, Understanding the ecological zones of the country, vegetation type in Zabol. Tehran: Research Institute of Forests and Rangelands. 2006. (In Persian).

Google Scholar

[27] Mclean, E.O, Soil pH and lime requirement, in: Al, P., Rh, M., Dr, K., (Eds.), Methods of soil analysis. Part 2, chemical and microbiological properties. Agronomy Monograph. 9. Madison (WI): American Society of Agronomy, Soil Science Society of America, 1982, p.199–224.

DOI: 10.2134/agronmonogr9.2.2ed.c12

Google Scholar

[28] Rhoades, J.D, Soluble salts, in: Al, P., Rh, M., Dr, K., (Eds.), Methods of soil analysis. Part 2, chemical and microbiological properties. Agronomy Monograph. 9. Madison (WI): American Society of Agronomy, Soil Science Society of America, 1982, p.167–178.

DOI: 10.2134/agronmonogr9.2.2ed.c10

Google Scholar

[29] Gee, G.W., Bauder, J.W, Particle-size analysis, in: Klute, A., (Eds.), Methods of soil analysis. Part I. Agronomy Monograph. 9. Madison (WI): American Society of Agronomy, Soil Science Society of America, 1986, p.383–411.

DOI: 10.2136/sssabookser5.1.2ed.c15

Google Scholar

[30] Nelson, D.W., Sommers, L.E, Total carbon, organic carbon, and organic matter, in: Page, A.L. et al., (Eds.), Methods of soil analysis. Part 2, 2nd ed. Madison (WI): American Society of Agronomy, American Society of Agronomy, 1996, pp.961-1010.

DOI: 10.2136/sssabookser5.3.c34

Google Scholar

[31] Berry, J.W., Chappell, D.G., Barnes, R.B, Imporved method of flame photometry. Industrial and Engineering Chemistry. Analytical Edition. 18 (1946) 19-24.

DOI: 10.1021/i560149a005

Google Scholar

[32] Lindsay, W.L., Norvell, W.A, Development of DTPA Soil test for Zinc, Iron, Mangnese and Copper. Soil Science Society of America Journal. 42 (1978) 421-428.

DOI: 10.2136/sssaj1978.03615995004200030009x

Google Scholar

[33] Doshi, R., Braida, W., Christodoulatos, C., Wazne, M., O'Connor, G, Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities. Environmental Research. 106 (2008) 296-303.

DOI: 10.1016/j.envres.2007.04.006

Google Scholar

[34] Küçük, B., Özkan, N., Volkan, M, Influence of ultrasonically assisted synthesis on particle size of magnetic nanoparticles. Journal of Physics and Chemistry of Solids. 74 (2013) 1426-1432.

DOI: 10.1016/j.jpcs.2013.04.027

Google Scholar

[35] Arnon, D.I, Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiology. 24 (1949) 1-15.

DOI: 10.1104/pp.24.1.1

Google Scholar

[36] Iwase, T., Tajima, A., Sugimoto, S., Okuda, Ki., Hironaka, I., Kamata, Y., Takada, K., Mizunoe, Y, A simple assay for measuring catalase activity: a visual approach. Scientific Reports. 3 (2013) 3081.

DOI: 10.1038/srep03081

Google Scholar

[37] Mano, J. I., Endo, T., Miyake, C, How do photosynthetic organisms manage light stress? A tribute to the late Professor Kozi Asada. Plant and Cell Physiology. 57 (2016) 1351-1353.

DOI: 10.1093/pcp/pcw116

Google Scholar

[38] Narula, C., Kaur, I., Kaur, N, Characterization and optoelectronics investigations of mixed donor ligand directed semiconductor ZnO nanoparticles. Journal of Materials Science: Materials in Electronics. 26 (2015) 791-800.

DOI: 10.1007/s10854-014-2465-2

Google Scholar

[39] Ghosh, M., Bandyopadhyay, M., Mukherjee, A, Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere. 81 (2010) 1253-1262.

DOI: 10.1016/j.chemosphere.2010.09.022

Google Scholar

[40] Clément, L., Hurel, C., Marmier, N, Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – Effects of size and crystalline structure. Chemosphere. 90 (2013) 1083-1090.

DOI: 10.1016/j.chemosphere.2012.09.013

Google Scholar

[41] Ghorbanpour, M, Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian Journal of Plant Physiology. 20 (2015) 249-256.

DOI: 10.1007/s40502-015-0170-7

Google Scholar

[42] Shyla, K.K., Natarajan, N, Customizing zinc oxide, silver and titanium dioxide nanoparticles for enhancing groundnut seed quality. Indian Journal of Science and Technology. 7 (2014) 1376-1381.

DOI: 10.17485/ijst/2014/v7i9.29

Google Scholar

[43] Wilson, P.J., Thompson, K.E.N., Hodgson, J.G, Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist. 143 (1999) 155-162.

DOI: 10.1046/j.1469-8137.1999.00427.x

Google Scholar

[44] Owolade, O., Ogunleti, D, Effects of titanium dioxide on the diseases, development and yield of edible cowpea. Journal of Plant Protection Research. 48 (2008) 329-336.

DOI: 10.2478/v10045-008-0042-5

Google Scholar

[45] Dumon, J.C., Ernst, W.H.O, Titanium in Plants. Journal of Plant Physiology. 133 (1988) 203-209.

Google Scholar

[46] Leskó, K., Stefanovits-Bányai, É., Pais, I., Simon-Sarkadi, L, Effect of cadmium and titanium-ascorbate stress on biological active compounds in wheat seedlings. Journal of Plant Nutrition. 25 (2002) 2571-2581.

DOI: 10.1081/pln-120014714

Google Scholar

[47] Kužel, S., Hruby, M., Cígler, P., Tlustoš, P., Van Nguyen, P, Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biological Trace Element Research. 91 (2003) 179-189.

DOI: 10.1385/bter:91:2:179

Google Scholar

[48] Lei, Z., Mingyu, S., Xiao, W., Chao, L., Chunxiang, Q., Liang, C., Hao, H., Xiaoqing, L., Fashui, H, Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research. 121 (2008) 69-79.

DOI: 10.1007/s12011-007-8028-0

Google Scholar

[49] Martinez‐Sanchez, F., Nunez, M., Amoros, A., Gimenez, J., Alcaraz, C, Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annuum L. fruits. Journal of Plant Nutrition. 16 (1993) 975-981.

DOI: 10.1080/01904169309364586

Google Scholar

[50] Carvajal, M., Alcaraz, C, Why titanium is a beneficial element for plants. Journal of Plant Nutrition. 21 (1998) 655-664.

DOI: 10.1080/01904169809365433

Google Scholar

[51] Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C., Yang, P, Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biological Trace Element Research. 111 (2006) 239-253.

DOI: 10.1385/bter:111:1:239

Google Scholar

[52] Morteza, E., Moaveni, P., Farahani, H.A., Kiyani, M, Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO 2 spraying at various growth stages. Springer Plus. 2 (2013) 247.

DOI: 10.1186/2193-1801-2-247

Google Scholar

[53] Jørgensen, K., Olsen, M.R. & Skibsted, L.H. Crocetin photodegradation as influenced by water activity in homogeneous solution. Z Lebensm Unters Forch 195, 555–558 (1992).

DOI: 10.1007/bf01204562

Google Scholar