Extension of a Simulation Model of the Freeform Bending Process as Part of a Soft Sensor for a Property Control

Article Preview

Abstract:

This work introduces an Abaqus CAE simulation model and its validation for freeform bending with movable die, which is extended in the simulation of a weld seam for the longitudinally welded tube. The superordinate goal is the development of a soft sensor, that can derive mechanical properties of a freeform bent tube as a basis for a closed-loop control. To guarantee a close monitoring of the mechanical properties, the soft sensor needs to be able to extrapolate the mechanical properties spatially. Because the investigated steel tubes are longitudinally welded, the weld depicts a disturbance regarding the rotational symmetry. In developing and validating a numerical simulation of the process, that quantitatively describes the influences the weld has on the mechanical properties, a significant improvement of the qualitative and quantitative prediction of the soft sensor can be achieved. The numerical modelling is done based on tensile tests on material taken from the weld seam, where hardness measurements are then used for the local validation of the model. The validated model now provides a time as well as cost efficient way of a primary investigation of the mechanical properties, especially regarding the local strength of the steel tube for a soft sensor and as input data for a feed forward control in the machine. Therefore, this work represents an important addition to the superordinate goal of developing a closed-loop property-control based on a soft sensor for freeform bending with movable die.

You have full access to the following eBook

Info:

Periodical:

Pages:

2137-2145

Citation:

Online since:

July 2022

Export:

* - Corresponding Author

[1] W. Volk, P. Groche, A. Brosius, A. Ghiotti, B.L. Kinsey, M. Liewald et al., Models and modelling for process limits in metal forming, CIRP Annals 68 (2019) 775–798.

DOI: 10.1016/j.cirp.2019.05.007

Google Scholar

[2] P. Kadlec, B. Gabrys, S. Strandt, Data-driven Soft Sensors in the process industry, Comput. & Chem. Eng. 33 (2009) 795–814.

DOI: 10.1016/j.compchemeng.2008.12.012

Google Scholar

[3] L. Fortuna, S. Graziani, A. Rizzo, M.G. Xibilia, Soft Sensors for Monitoring and Control of Industrial Processes, 1st ed., Springer London, London, (2007).

Google Scholar

[4] S.C. Stebner, D. Maier, A. Ismail, S. Balyan, M. Dölz, B. Lohmann et al., A System Identification and Implementation of a Soft Sensor for Freeform Bending, Materials 14 (2021) 4549.

DOI: 10.3390/ma14164549

Google Scholar

[5] D. Maier, S. Stebner, A. Ismail, M. Dölz, B. Lohmann, S. Münstermann et al., The influence of freeform bending process parameters on residual stresses for steel tubes, AIME 2 (2021) 100047.

DOI: 10.1016/j.aime.2021.100047

Google Scholar

[6] A. Ismail, D. Maier, S. Stebner, W. Volk, S. Münstermann, B. Lohmann, A Structure for the Control of Geometry and Properties of a Freeform Bending Process, IFAC-PapersOnLine 54 (2021) 115–120.

DOI: 10.1016/j.ifacol.2021.10.060

Google Scholar

[7] K.-J. Matthes, W. Schneider, Schweißtechnik: Schweißen von metallischen Konstruktionswerkstoffen, 6th ed., Hanser Verlag, München, (2016).

DOI: 10.3139/9783446470002.fm

Google Scholar

[8] K. Xie, J.A. Camelio, L.E. Izquierdo, Dimensional Error Compensation in Compliant Assembly Processes Using Virtual Assembly Training, in: ASME 2008 International Manufacturing Science and Engineering Conference, Volume 1, Evanston, Illinois, USA, 2008, p.503–512.

DOI: 10.1115/msec_icmp2008-72219

Google Scholar

[9] Deutsches Institut für Normung e.V., Kaltgeformte geschweißte Hohlprofile für den Stahlbau: Teil 1: Allgemeines(10219-1:2016-01), Beuth Verlag GmbH, Berlin, (2016).

DOI: 10.31030/2399624

Google Scholar

[10] Deutsches Institut für Normung e.V., Geschweißte Stahlrohre für Druckbeanspruchungen - Technische Lieferbedingungen: Teil 1: Elektrisch geschweißte und unterpulvergeschweißte Rohre aus unlegierten Stählen mit festgelegten Eigenschaften bei Raumtemperatur(10217-1), Beuth Verlag GmbH, Berlin, Heidelberg, (2019).

DOI: 10.31030/2524448

Google Scholar

[11] Deutsches Institut für Normung e.V., Metallische Werkstoffe - Zugversuch: Teil 1: Prüfverfahren bei Raumtemperatur(6892-1), Beuth Verlag GmbH, Berlin, (2020).

Google Scholar

[12] M.K. Werner, D. Maier, L. Scandola, W. Volk, Motion profile calculation for freeform bending with moveable die based on tool parameters, ESAFORM 2021 (2021).

DOI: 10.25518/esaform21.1879

Google Scholar

[13] N. Beulich, P. Craighero, W. Volk, FEA Simulation of Free-Bending – a Preforming Step in the Hydroforming Process Chain, J. Phys.: Conf. Ser. 896 (2017) 12063.

DOI: 10.1088/1742-6596/896/1/012063

Google Scholar

[14] M. Henrich, F. Pütz, S. Münstermann, A Novel Approach to Discrete Representative Volume Element Automation and Generation-DRAGen, Materials 13 (2020) 1887.

DOI: 10.3390/ma13081887

Google Scholar