Construction, Evaluation, and Performance of a Water Condensation Test Unit

Article Preview

Abstract:

The study of water condensation phenomena is important in order to evaluate the performance of materials and coatings employed in the fabrication of waste heat recovery units including heat exchangers, heat pipes, condensing economizers and related functional surfaces. Fast evaluation of lab-scale samples is important during research and development of coatings for wetting phenomena under controlled, reproducible, and stable humidity and temperature conditions of both sample and environment. To study these effects, we report on the construction of a lab-scale condensation chamber, along with its evaluation and benchmarking with superhydrophobic coatings on stainless steel using perfluorooctyl silane (PFOTS). A working unit has been successfully fabricated and applied in a highly responsive device capable of recording the condensation performance of flat specimens under controlled conditions. Sample temperature was maintained with 0.10 °C deviation. The humidity response time of the chamber is 17.2 s per degree of RH% while the maximum relative humidity variation is +/- 3.2%RH. The unit successfully delivered valuable data over hydrophillic, hydrophobic and superhydrophobic surfaces. Data useful for studying open research issues such the relationship of contact angle and condensation phenomena.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-43

Citation:

Online since:

October 2023

Export:

Price:

* - Corresponding Author

[1] H. Jouhara, N. Khordehgah, S. Almahmou, B. Delpech, A. Chauhan, S. A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268-289.

DOI: 10.1016/j.tsep.2018.04.017

Google Scholar

[2] H. Chen, Y. Zhou, S. Cao, X. Li, X. Su, L. An, D. Gao, Heat exchange and water recovery experiments of flue gas with using nanoporous ceramic membranes, Applied Thermal Engineering 110 (2017) 686-694.

DOI: 10.1016/j.applthermaleng.2016.08.191

Google Scholar

[3] C.M. Duron, J. Zhong, A.E. David, W.R. Ashurst, S.H. Bhavnani, J.R. Morris, A.C. Bates, Development of a durable vapor phase deposited superhydrophobic coating for steam cycle power generation condenser tubes, American Society of Mechanical Engineers V001T005A003-V001T005A003 (2017).

DOI: 10.1115/1.4039783

Google Scholar

[4] Q. Zhuang, P. Geddis, B. Clements, V. Ko, Corrosion-resistant coating development with potential application in equipment of low-temperature waste heat recovery, The Canadian Journal of Chemical Engineering 96 (2018) 101-106.

DOI: 10.1002/cjce.23019

Google Scholar

[5] K. Rykaczewski, A.T. Paxson, M. Staymates, M.L. Walker, X. Sun, S. Anand, S. Srinivasan, G.H. McKinley, J. Chinn, J.H.J. Scott, Dropwise condensation of low surface tension fluids on omniphobic surfaces Scientific reports 4 (2014) 4158.

DOI: 10.1038/srep04158

Google Scholar

[6] S.Q. Cai, A. Bhunia, Superhydrophobic condensation enhanced by conical hierarchical structures. The Journal of Physical Chemistry C121 (2017) 10047-10052.

DOI: 10.1021/acs.jpcc.7b02554

Google Scholar

[7] V. Stathopoulos, V. Sadykov, S. Pavlova, Y. Bespalko, Y. Fedorova, L. Bobrova, A. Salanov, A. Ishchenko, V. Stoyanovsky, T. Larina, V. Ulianitsky, Z. Vinokurov, V. Kriventsov, Design of functionally graded multilayer thermal barrier coatings for gas turbine application, Surface and Coatings Technology 295 (2016) 20-28.

DOI: 10.1016/j.surfcoat.2015.11.054

Google Scholar

[8] P. Nanou, A. Zarkadoulas, P.K. Pandis, I. Tsilikas, I. Katis, D. Almpani, N.G. Orfanoudakis, N. Vourdas, V.N. Stathopoulos, Micromachninig on stainless steel 304 for improved water condensation properties (Proceedings of MSSM2022, 11-13 July 2022, Brunel University London-UK) Key Engineering materials, 2023 "accepted"

Google Scholar

[9] P. Nanou, J. Konstantaras, A. Zarkadoulas, V.N. Stathopoulos, Development and evaluation of corrosion resistance hydrophobic properties of thermal sprayed coatings over carbon steel, MSSM2022 (Proceedings of MSSM2022, 11-13 July 2022, Brunel University London-UK) Key Engineering materials, 2023 "accepted"

Google Scholar

[10] N. Vourdas, E. Marathoniti, P.K. Pandis, C.Argirusis, G. Sourkouni, C. Legros, S. Mirza, V. N. Stathopoulos, Evaluation of LaAlO3 as top coat material for thermal barrier coatings, Trans. Nonferrous Met. Soc. China 28 (2018) 1582−1592.

DOI: 10.1016/s1003-6326(18)64800-9

Google Scholar

[11] V. Kovalenko, V. Kotok, V.N. Stathopoulos, Smart Coatings Against Corrosion. Encyclopedia of Smart Materials 1 (2022) 400-413.

DOI: 10.1016/b978-0-12-815732-9.00058-9

Google Scholar

[12] S. Adera, L. Naworski, A. Davitt, N. K. Mandsberg, A. V. Shneidman, J. Alvarenga, J. Aizenberg, Enhanced condensation heat transfer using porous silica inverse opal coatings on copper tubes Sci. Rep. 11 (2021) 10675.

DOI: 10.1038/s41598-021-90015-x

Google Scholar

[13] N. Vourdas, H. Jouhara, S. A. Tassou, V. N. Stathopoulos, Design criteria for coatings in next generation condensing economizers, Energy Procedia 161 (2019) 412–420.

DOI: 10.1016/j.egypro.2019.02.095

Google Scholar

[14] Z. Li, Y. Lu, R. S. Huang, J. Chang, X. Yu, R. Jiang, X. Yu, A. Roskilly, Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage, Applied Energy 283 (2021) 116277.

DOI: 10.1016/j.apenergy.2020.116277

Google Scholar

[15] D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang, Scalable graphene coatings for enhanced condensation heat transfer. Nano letters 15 (2015) 2902-290.

DOI: 10.1021/nl504628s

Google Scholar

[16] L. Montorsi, H. Jouhara, M. Venturelli, B Delpech, I. Celades Lopez, M-G. Asci, G. Bright, G. Jacomelli, D. Kroll, L, Zacares, M. Manfredini, D. Turesson, E. Rubion, V. Stathopoulos, R. Poskas, W. Gernjak, J. Santos, I. Marin, T. Stepisnik, D. Iatrou, A.Sayegh, "iWAYS - Recycling of heat, water and material across multiple sectors: ceramic, chemical and steel industry, (Proceedings of MSSM2022, 11-13 July 2022, Brunel University London-UK) Key Engineering materials, 2023 "accepted"

Google Scholar

[17] P. K. Pandis, S. Papaioannou, V. Siaperas, A. Terzopoulos, V. N. Stathopoulos, "Evaluation of Zn- and Fe- rich organic coatings for corrosion protection and condensation performance on waste heat recovery surfaces", Int. J. Thermofluids 3–4 (2020) 100025.

DOI: 10.1016/j.ijft.2020.100025

Google Scholar

[18] I. Iliopoulos, A. Karampekios, P.K. Pandis, N. Vourdas, H. Jouhara, S. Tassou, V.N. Stathopoulos, Evaluation of organic coatings for corrosion protection of condensing economizers, Procedia Structural Integrity 10 (2018) 295-302.

DOI: 10.1016/j.prostr.2018.09.041

Google Scholar

[19] N. Vourdas, G. Pashos, G. Kokkoris, A.G. Boudouvis, V.N. Stathopoulos, Droplet mobility manipulation on porous media using backpressure. Langmuir 32 (2016) 5250-5258.

DOI: 10.1021/acs.langmuir.6b00900

Google Scholar

[20] J. Trosseille, A. Mongruel, L. Royon, M. G. Medici, D. Beysens, Roughness-enhanced collection of condensed droplets Eur. Phys. J. E 42 (2019) 144.

DOI: 10.1140/epje/i2019-11905-9

Google Scholar

[21] J. Shim, D. Seo, S. Oh, J. Lee, Y. Nam, Condensation Heat Transfer Performance of Thermally Stable Superhydrophobic Cerium Oxide Surfaces, ACS Appl. Mater. Interfaces 10 (2018) 31765–31776.

DOI: 10.1021/acsami.8b09597

Google Scholar

[22] C. A. Harper, E. M. Petrie, Plastics materials and processes: a concise encyclopedia., John Wiley & Sons, 2003, pp.8-9.

Google Scholar

[23] M. Psarski, J. Marczak, G. Celichowski, G. B. Sobieraj, K. Gumowski, F. Zhou, W. Liu, Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties, Cent. Eur. J. Phys. 10 (2012) 1197-1201.

DOI: 10.2478/s11534-012-0114-z

Google Scholar

[24] N. Vourdas, C. Ranos, V.N. Stathopoulos, Reversible and dynamic transitions between sticky and slippery states on porous surfaces with ultra-low backpressure, RSC Advances 5 (2015) 33666-33673.

DOI: 10.1039/c5ra00663e

Google Scholar

[25] A. Milionis, C. Noyes, E. Loth, I. S. Bayer, A. W. Lichtenberger, V. N. Stathopoulos, N. Vourdas, Water-Repellent Approaches for 3-D Printed Internal Passages Materials and Manufacturing Processes 31 (2016) 1162-1170.

DOI: 10.1080/10426914.2015.1059443

Google Scholar

[26] N. Vourdas, K. Dalamagkidis and V. N. Stathopoulos, Active porous valves for plug actuation and plug flow manipulation in open channel fluidics, RSC Advances 5 (2015) 104594-104600.

DOI: 10.1039/c5ra21263d

Google Scholar

[27] V. Chalkia, N. Tachos, P.K. Pandis, A. Giannakas, Maria K. Koukou, M.Gr. Vrachopoulos, L. Coelho, A. Ladavos, V.N. Stathopoulos, Influence of organic phase change materials on the physical and mechanical properties of HDPE and PP polymers, RSC Advances 8 (2018) 27438-27447.

DOI: 10.1039/c8ra03839b

Google Scholar

[28] A. Goswami, S. C. Pillai, G. McGranaghan, Surface modifications to enhance dropwise condensation, Surfaces and Interfaces, 25 (2021) 101143.

DOI: 10.1016/j.surfin.2021.101143

Google Scholar