Fabrication of Polycaprolactone -Silica Aerogel Nanofibers via Electrospinning Method

Article Preview

Abstract:

The field of nanotechnology has seen rapid advancements over the last decade. Nanofiber production through the method of electrospinning is one of the attraction points in this area. The nanofibers, prepared with nano-sized additives, particularly with polymer, have an extensive range of usages. This study utilizes silica aerogels obtained by the sol-gel method due to their low density of 700-800 gr/m2. Polycaprolactone (PCL)-Silica Aerogel Nanofibers were attained by adding 0.5%,1%, 2%and 4% of previously produced aerogels to the nanofibers formed by electrospinning. This paper correspondingly examined the differences between AC-CL and MET-CL solvent groups being utilized during the preparation of the solutions. In addition to this examination, series of material tests were conducted, such as tensile test, SEM, FTIR, DTA/TG, and BET. Overall, the resultant nanofibers with a property of high surface area can be utilized in the design of materials applied to many areas, including solar devices, solar pools, sensors, and capacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-174

Citation:

Online since:

May 2022

Export:

Price:

* - Corresponding Author

[1] M. Mohammadian, T. Kashi, M. Erfam, F. Soorbaghi, Synthesis and characterization of silica aerogel as a promising drug carrier system, J. Drug Delivery Sci. Technol. 44 (2018) 205-212.

DOI: 10.1016/j.jddst.2017.12.017

Google Scholar

[2] J. Randall, M. Meador, S. Jana, Tailoring Mechanical Properties of Aerogels for Aerospace Applications, ACS Applied Mater. Interfaces. 3 (2011) 613-626.

DOI: 10.1021/am200007n

Google Scholar

[3] J.Li, J.Cao, L.Huo, X. He, One-step synthesis of hydrophobic silica aerogel via in situ surface modification, Mater. Lett. 87 (2012) 146-149.

DOI: 10.1016/j.matlet.2012.07.078

Google Scholar

[4] H.Maleki,L.Duraes,A. Portugal, An overview on silica aerogels synthesis and different mechanical reinforcing strategies, J. Non-Cryst. Solids. 384 (2014) 55-74.

DOI: 10.1016/j.jnoncrysol.2013.10.017

Google Scholar

[5] A. Dorcheh, M. Abbasi, Silica aerogel; synthesis, properties and characterization, J. Mater. Process. Technol. 199 (1-3) (2008) 10-26.

Google Scholar

[6] T. Błaszczyński, A. Ślosarczyk, M. Morawski, Synthesis of Silica Aerogel by Supercritical Drying Method, Procedia Eng. 57 (2013) 200-206.

DOI: 10.1016/j.proeng.2013.04.028

Google Scholar

[7] I.Smirnova, P.Gurikov, Aerogel production: Current status, research directions, and future opportunities, J. Supercrit. Fluids. 134 (2018) 228-233.

DOI: 10.1016/j.supflu.2017.12.037

Google Scholar

[8] P.P. Das, V. Chaudhary,F.Ahmad,A.Manral, A. Effect of nanotoxicity and enhancement in performance of polymer composites using nanofillers: A state-of-the-art review, Polym. Compos. 42(5) (2021) 2152-2170.

DOI: 10.1002/pc.25968

Google Scholar

[9] M.Woodruff,D.Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Prog. Polym. Sci. 35(10) (2010) 1217-1256.

DOI: 10.1016/j.progpolymsci.2010.04.002

Google Scholar

[10] C. Bordes, V. Freville, E. Ruffin, P. Marote, J. Gauvrit, S. Briançon,P. Lanteri, Determination of poly(-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process, Int. J. Pharm. 383(1-2) (2010) 236-243.

DOI: 10.1016/j.ijpharm.2009.09.023

Google Scholar

[11] V. Sinha, K. Bansal, R. Kaushik, R. Kumria,A. Trehan, A Poly-ϵ-caprolactone microspheres and nanospheres: an overview, Int. J. Pharm. 278(1) (2004) 1-23.

DOI: 10.1016/j.ijpharm.2004.01.044

Google Scholar

[12] S.Tang, Y.Zeng,X.Wang, Splashing needleless electrospinning of nanofibers, Polym. Eng. Sci. 50(11) (2010) 2252-2257.

DOI: 10.1002/pen.21767

Google Scholar

[13] L.Wang, P.Topham, O.Mykhaylyk, H.Yu, A.Ryan, J.Fairclough,W.Bras, Self‐Assembly‐Driven Electrospinning: The Transition from Fibers to Intact Beaded Morphologies, Macromol. Rapid Commun. 36(15) (2015) 1437-1443.

DOI: 10.1002/marc.201500149

Google Scholar

[14] B. Xu, B. Hu, Q. Zhang, Y. Xu, Y. Liu, W. Yu, L. Li, Phase-separation-driven formation of Nickel–Cobalt oxide nanotubes as high-capacity anode materials for lithium-ion batteries, Mater. Res. Lett. 7(9) (2019) 368-375.

DOI: 10.1080/21663831.2019.1613267

Google Scholar

[15] Wu, T.Shi, T.Yang, Y.Sun, L.Zhai, W.Zhou, M.Zhang,J.Zhang. Electrospinning of poly (trimethylene terephthalate)/carbon nanotube composites, Eur. Polym. J. 47(3) (2011) 284-293.

DOI: 10.1016/j.eurpolymj.2010.12.006

Google Scholar

[16] M. F. R. Hanifah, J. Jaafar, M. H. D. Othman, A. F. Ismail, M. A. Rahman, N. Yusof, F. Aziz. Electro-spun of novel PVDF-Pt-Pd/RGO-CeO2 composite nanofibers as the high potential of robust anode catalyst in direct methanol fuel cell: Fabrication and characterization, Inorg. Chem. Commun. 107 (2019) 107487.

DOI: 10.1016/j.inoche.2019.107487

Google Scholar

[17] M.Enculescu, A. Evanghelidis,I. Encelecsu, Influence of morphology on the emissive properties of dye-doped PVP nanofibers produced by electrospinning, J. Phys. Chem. Solids. 75(12) (2014) 1365-1371.

DOI: 10.1016/j.jpcs.2014.07.008

Google Scholar

[18] L.Li, B.Yalcin, B.Nguyen, M.Meador,M.Cakmak, Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization, ACS Applied Mater. Interfaces. 1(11) (2009) 2491-2501.

DOI: 10.1021/am900451x

Google Scholar

[19] R. Asmatulu, M. Ceylan, N. Nuraje, Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems, Langmuir. 27(2) (2011) 504–507.

DOI: 10.1021/la103661c

Google Scholar

[20] N.Nuraje, W.S. Khan, Y.Lei, M. Ceylan,R. Asmatulu, Superhydrophobic electrospun nanofibers, J. Mater. Chem. A, 1 (2013) 1929-1946.

DOI: 10.1039/c2ta00189f

Google Scholar

[21] S. Das, V.C. Srivastava, Hierarchical nanostructured ZnO-CuO nanocomposite and itsphotocatalytic activity, J. Nano Res, 35 (2015) 21-26.

DOI: 10.4028/www.scientific.net/jnanor.35.21

Google Scholar

[22] F.Çallıoğlu, Silindirli Elektro Lif Çekim Yöntemi ile Nano Lif Üretimi, Tekstil ve Mühendis, 20(91) (2013) 35-49.

DOI: 10.7216/130075992013209105

Google Scholar

[23] S.BhullarD.Rana, H.Lekesiz, A.Bedeloglu, J.Ko, Y.Cho, Z.Aytac, T.Uyar, M.Jun,M.Ramalingam, Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications, Mater Sci Eng C Mater Biol Appl. 1(81) (2017) 334-340.

DOI: 10.1016/j.msec.2017.08.022

Google Scholar

[24] E.B. Yılmaz, M. Ceylan, Synthesis and Characterization of Polycaprolactone Nanocomposite Fiber with Titanium Dioxide Additives, Eskişehir Technical University Journal of Sci. and Technol. B- Theor. Sci. 8(2) (2020) 257-265.

Google Scholar

[25] G.Ban, S.Song, H.Lee,H.Kim, Effect of Acidity Levels and Feed Rate on the Porosity of Aerogel Extracted from Rice Husk under Ambient Pressure, Nanomaterials. 9(2) (2019) 1-11.

DOI: 10.3390/nano9020300

Google Scholar

[26] D. Boday B. Muriithi, R. Stover, D. Loy, Polyaniline nanofiber–silica composite aerogels, J. Non-Cryst. Solids. 358(12-13) (2012) 1575-1580.

DOI: 10.1016/j.jnoncrysol.2012.04.020

Google Scholar

[27] H. Sehaqui, Q. Zhou, L. Berglund, High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC), Compos. Sci. Technol. 71(13) (2011) 1593-1599.

DOI: 10.1016/j.compscitech.2011.07.003

Google Scholar

[28] Y.Yu, Q.Ma, J.Zhang,G.Liu, Electrospun SiO2 aerogel/polyacrylonitrile composited nanofibers with enhanced adsorption performance of volatile organic compounds, Appl. Surf. Sci. 512 (2020) 145697.

DOI: 10.1016/j.apsusc.2020.145697

Google Scholar