Effect of the Introduction of a Staircase Defect on the Behavior of the Induced Electronic State in a MQWs Structure

Article Preview

Abstract:

This work investigates the behavior of the electronic states in ZnO/ Zn1-xMgxO MQWs induced by a staircase-like defect layer bounded by two substrates of the same type (ZnO). We use the interface response theory to calculate the different physical properties of the system. First, westudied a material staircase defect containing three material defects, such where the concentration depends on an increasing step noted P and a parameter X0 which does not exceed 0.35, so that the materials remain crystallized in the same structure. We found that the increase of these parameters induces an augmentation in the potential energy, leading to shifts of the electronic states to higher energies. In the second part, we studied the effect of introducing a geo-material defect with the step P=0.05 and X0=0 as optimal values, and the thickness of the staircase defect layer depends on an increment step noted S. We found that the variation of S influences the number of states that appear in the gap, which gives the possibility to improve the electron transport without using higher energy.Finally, we try to find several staircase defect configurations used in different structures. We found that inside the case of symmetric defect permutation, the position of the defect does not influence the behavior of the electronic states. Still, in the case of antisymmetric permutation, the position of thedefect has an influence on the behavior of the electronic states.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-24

Citation:

Online since:

August 2022

Export:

Price:

* - Corresponding Author

[1] Y. Arakawa, A. Larsson, J. Paslaski, A. Yariv, Active Q switching in a GaAs/AlGaAs multiquantum well laser with an intracavity monolithic loss modulator, Appl. phys. Lett. 48 (1986) 561–563.

DOI: 10.1063/1.96507

Google Scholar

[2] B.F. Levine, Quantum‐well infrared photodetectors, J. appl. Phys,74 (1993) R1-R81.

Google Scholar

[3] J.M. Woodall, H.J. Hovel, LPE growth of GaAs-Ga1-xAlxAs solar cells, J. Crystal Growth 39 (1977) 108–116.

DOI: 10.1016/0022-0248(77)90158-0

Google Scholar

[4] E. Zielony, M. A. Pietrzyk, Diode characteristics of ZnO/ZnMgO nanowire pn junctions grown on Si by molecular beam epitaxy, Mat. Sci. Eng. B. 268 (2021) 115148.

DOI: 10.1016/j.mseb.2021.115148

Google Scholar

[5] H. Yıldırım, Dispersion Relations of interface and quasi-confined Phonon Modes in ZnO/BeZnO Quantum Wells, Phys. Lett. A, 385 (2021) 126977.

DOI: 10.1016/j.physleta.2020.126977

Google Scholar

[6] A. Ezzarfi, F. Z. Elsamri, Y. Bouchafra, Y. Ben-Ali, A. Sali, D. Bria, Localized defect states based on defective multi-quantum wells, Materials Today: Proceedings, 45 (2021) 7388-7393.

DOI: 10.1016/j.matpr.2021.01.439

Google Scholar

[7] R. En-nadir, H. El Ghazi, W. Belaid, A. Jorio, I. Zorkani, Intraconduction band-related optical absorption in coupled (In, Ga) N/GaN double parabolic quantum wells under temperature, coupling and composition effects, Res. Opt. 5 (2021) 100154.

DOI: 10.1016/j.rio.2021.100154

Google Scholar

[8] I. Erdogan, S. Yavuz, Laser field effect on self-polarization of a donor impurity in a finite Ga1− xAlxAs/GaAs quantum well, J. Phys B: Cond. Matt. 609 (2021) 412728.

DOI: 10.1007/s12648-020-01829-w

Google Scholar

[9] Y. Ben-Ali, I. El Kadmiri, A. Ghadban, K. Ghoumid, A. Mazari, D. Bria, Two-Channel Demultiplexer Based on 1D Photonic Star Waveguides Using Defect Resonators Modes, Prog. Elec. Res. B. 93 (2021) 131-149.

DOI: 10.2528/pierb21061203

Google Scholar

[10] A. Ezzarfi, F. Z. Elamri, F. Z. Safi, Y. Bouchafra, Y. Ben-Ali, A. Sali, D. Bria, High quality factor multichannel filter of electrons based on defective CdMnTe/CdTe multi-quantum wells, Phys. Scr. 96 (2021) 125811.

DOI: 10.1088/1402-4896/ac217f

Google Scholar

[11] A. Shokri, Electrical transport engineering of semiconductor superlattice structures, Phys. B: Cond Matt, 438 (2014) 13-16.

Google Scholar

[12] F. Maiz, Superlattice band structure: New and simple energy quantification condition. Physica B: Condensed Matter, 450 (2014) 67-70.

DOI: 10.1016/j.physb.2014.05.055

Google Scholar

[13] J. Nanda, P. K. Mahapatra, C. L. Roy, Transmission coefficient, resonant tunneling lifetime and traversal time in multibarrier semiconductor heterostructure, Phys B: Cond Matter, 383 (2006) 232-242.

DOI: 10.1016/j.physb.2006.03.021

Google Scholar

[14] F. Z. Elamri, F. Falyouni, D. Bria, Effect of the Hydrostatic Pressure on the Electronic States Induced by a Geo-Material Defect Layer in a Multi-quantum Wells Structure, In International Conference on Electronic Engineering and Renewable Energy Springer, Singapore. (2020) 203-210.

DOI: 10.1007/978-981-15-6259-4_20

Google Scholar

[15] M. R. Qasem, F. Falyouni, F. Z. Elamri, D. Bria, Electronic states in GaAs∕ Ga1− xAlxAs∕ GaAs MQWs induced by two defect layers, Phys. B: Cond Matt. (2021) 413228.

Google Scholar

[16] F. Z. Elamri, F. Falyouni, D. Bria, Electronic States in GaAs/Ga 0.6 Al 0.4 As Multi-quantum Wells with Two Defect Layers, In International Conference on Integrated Design and Production. Springer, Cham. (2019, October) 239-248.

DOI: 10.1007/978-3-030-62199-5_21

Google Scholar

[17] Y. Ben-Ali, Z. Tahri, A. Bouzidi, F. Jeffali, D. Bria, M. Azizi, A. Nougaoui, Propagation of electromagnetic waves in a one-dimensional photonic crystal containing two defects, J Mat. Env. Sci. 8 (2017) 870-876.

Google Scholar

[18] I. El Kadmiri, F. Z. Elamri, Y. Ben Ali, A. Khaled, A. Kerkour El Miad, D. Bria, Acoustical multi-frequency filtering by a defective asymmetric phononic serial loop structure, AIP Advances. 10 (2020) 075313.

DOI: 10.1063/5.0011208

Google Scholar

[19] F. Z. Elamri, F. Falyouni, D. Bria, Nonlinear pressure effect on the electronic states induced by a defect layer in a multi-quantum wells structure, Materials Today: Proceedings, 31, (2020) S109-S113.

DOI: 10.1016/j.matpr.2020.06.382

Google Scholar

[20] Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, J. Zhou, Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer, Opt. exp. 23 (2015) 6673-6678.

DOI: 10.1364/oe.23.006673

Google Scholar

[21] G. K. Costa, P. M. Gouvêa, L. M. Soares, J. M. Pereira, F. Favero, A. M. Braga, I.C. Carvalho, In-fiber Fabry-Perot interferometer for strain and magnetic field sensing, Opt. exp. 24 (2016) 14690-14696.

DOI: 10.1364/oe.24.014690

Google Scholar

[22] Y. Zhao, F. Xia, H. F. Hu, C. Du, A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement, IEEE Trans Instrum. Meas, 66 (2017) 3378-3386.

DOI: 10.1109/tim.2017.2751698

Google Scholar

[23] Y. Ben-Ali, F. Z. Elamri, A. Ouriach, F. Falyouni, Z. Tahri, D. Bria, A high sensitivity hydrostatic pressure and temperature based on a defective 1D photonic crystal, J. Electr. Wav. Appl. 34 (2020) 2030-2050.

DOI: 10.1080/09205071.2020.1806116

Google Scholar

[24] A. Nagaty, A. Mehaney, A. H Aly, Acoustic wave sensor based on piezo magnetic phononic crystal, J. Superc. Nov. Magn. 31 (2018) 4173-4177.

DOI: 10.1007/s10948-018-4702-z

Google Scholar

[25] A. Mehaney, M. A. Ashour, Theoretical design of porous phononic crystal sensor fordetecting CO2 pollutions in air low-dimensional Systems and Nanostructures, Phys. E,124 (2020) 114353.

DOI: 10.1016/j.physe.2020.114353

Google Scholar

[26] Elamri, F. Z., Falyouni, F., Kerkour-El Miad, A., & Bria, D. Effect of defect layer on the creation of electronic states in GaAs/GaAlAs multi-quantum wells, App. Phys. A, 125 (2019) 1-12.

DOI: 10.1007/s00339-019-3031-9

Google Scholar

[27] F. Rahman, Zinc oxide light-emitting diodes: a review. Opt. Eng. 58 (2019) 010901.

Google Scholar

[28] Y. H. Zan, S. L. Ban, Electronic mobility limited by optical phonons in symmetric MgxZn1-xO/ZnO quantum wells with mixed phases, Sup. Micr. 150 (2021) 106782.

DOI: 10.1016/j.spmi.2020.106782

Google Scholar

[29] K. Koike, K. Hama, I. Nakashima, G. Y. Takada, K. I. Ogata, S. Sasa, M. Yano, Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (1 1 1)-oriented Si substrate toward UV-detector applications, J. cryst. gro. 278 (2005) 288-292.

DOI: 10.1016/j.jcrysgro.2005.01.021

Google Scholar