Modification of Thermoresponsive Poly(N-Isopropylacrylamide) End-Group with Hydrophilic and/or Hydrophobic Compounds Tuned the LCST

Article Preview

Abstract:

Poly (N-isopropylacrylamide) (PNIPAAm) is one of the most well-known thermoresponsive polymers that exhibits a reversible coil-to-globule transition in aqueous solution at lower critical solution temperature (LCST) (32°C). PNIPAAm behave as an extended coil form in an aqueous solution below the LCST, meanwhile, above the LCST, it shrinks into a globule form. The LCST of PNIPAAm could be tune when it is chemically modified with hydrophilic and/or hydrophobic compound. In this study, modifications of PNIPAAm end-group with maleimide or phenyl maleimide compounds were prepared and their LCST behaviours were investigated. One end-group of synthesized poly (N-isopropylacrylamide)-chain transfer agent (PNIPAAm-CTA) was modified with maleimide or phenyl maleimide compound through aminolysis reaction to form PNIPAAm-Maleimide (PNIPAAm-M) and PNIPAAm-Phenyl maleimide (PNIPAAm-PhM). Maleimide is a hydrophilic compound, and phenyl maleimide is a slight hydrophobic compound were used in this study. The modification with hydrophilic compound will higher the LCST of PNIPAAm. The slight hydrophobic of phenyl maleimide compound will decrease the LCST. In this study, the successfulness of aminolysis process of PNIPAAm-CTA were determined through the fourier transform infrared (FTIR). Moreover, the LCST behavior of PNIPAAm-CTA, PNIPAAm-M and PNIPAAm-PhM were determined through light scattering intensity analysis. The results indicated that upon heating the solutions of PNIPAAm-CTA, PNIPAAm-M and PNIPAAm-PhM in 10 mM HEPES solution pH 7.4 at 25°C–40°C, PNIPAAm-CTA, and PNIPAAm-PhM solutions started to increase their light intensities at 35°C and PNIPAAm-M at 36°C, respectively. To conclude, modification of PNIPAAm end-group with hydrophobic and/or hydrophilic compound could tune their LCST.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 339)

Pages:

3-10

Citation:

Online since:

December 2022

Export:

Price:

* - Corresponding Author

[1] A. Feng, J. Yuan, Smart Nanocontainers: Progress on Novel Stimuli-Responsive Polymer Vesicles, Macromolecular Rapid Communications (2014) 35, 767.

DOI: 10.1002/marc.201300866

Google Scholar

[2] M. A. Ward, T. K. Georgiou, Thermoresponsive Polymers for Biomedical Applications, Polymers (2011) 3, 1215.

Google Scholar

[3] E. Cabane, X. Zhang, K. Langowska, C. G. Palivan, W. Meier, Stimuli-Responsive Polymers and Their Applications in Nanomedicine, Biointerphases (2012) 7 (9), 1.

DOI: 10.1007/s13758-011-0009-3

Google Scholar

[4] A. J. Convertine, C. Diab, M. Prieve, A. Paschal, A. S. Hoffman, P. H. Johnson, P.S. Stayton, pH-Responsive Polymeric Micelle Carriers for siRNA Drugs, Biomacromolecules (2010), 11, 2904.

DOI: 10.1021/bm100652w

Google Scholar

[5] J. L. Arias, G. Gorrasi, L. Guadagno, Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives, Nanomaterials (2021), 11(4), 848.

DOI: 10.3390/nano11040848

Google Scholar

[6] A. Halperin, M. Kroger, F. M. Winnik, Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research, Angewandte Chemie Int. Ed. (2015), 54 (51),15342.

DOI: 10.1002/anie.201506663

Google Scholar

[7] M. Heskins, J. E. Guillet, Solution Properties of Poly(N-isopropylacrylamide), J. Macromol. Sci. Chem. (1968) 2, 1441.

Google Scholar

[8] H. Schild, Poly(N-isopropylacrylamide): experiment, theory and application, Prog. Polym. Sci. (1992) 17(2), 163.

Google Scholar

[9] H. Feil, Y. H. Bae, J. Feijen, S. W. Kim, Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N- Isopropylacrylamide copolymers, Macromolecules (1993) 26, 2496.

DOI: 10.1021/ma00062a016

Google Scholar

[10] Y. Hiruta, Y. Nagumo, Y. Suzuki, T. Funatsu, Y. Ishikawa, H. Kanazawa, The effects of anionic electrolytes and human serum albumin on the LCST of poly(N-isopropylacrylamide)-based temperature-responsive copolymers, Colloids and Surface B: Biointerfaces (2015) 132, 299.

DOI: 10.1016/j.colsurfb.2015.05.032

Google Scholar

[11] N. F. C. Harun, H. Takemoto, T. Nomoto, K. Tomodo, M. Matsui, N. Nishiyama, Artificial control of Gene Silencing Activity Based on siRNA Conjugation with Polymeric Molecule Having Coil-Globule Transition Behavior, Bioconjugate Chemistry (2016) 27(9), (1961).

DOI: 10.1021/acs.bioconjchem.6b00322

Google Scholar

[12] J. Nicholas, N. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Nitroxide-mediated Polymerization, Progress in Polymer Science (2013) 38, 63.

DOI: 10.1016/j.progpolymsci.2012.06.002

Google Scholar

[13] J. T. Rademacher, M. Baum, M. E. Pallack, W. J. Brittain. Atom Transfer Radical Polymerization of N, N-Dimethylacrylamide, Macromolecules (2000) 33, 284.

DOI: 10.1021/ma991550o

Google Scholar

[14] Z. Gao, X. Tao, Y. Cui, T. Satoh, T. Kakuchi, Q. Duan. Synthesis of end-functionalized poly(N-isopropylacrylamide) with group of asymmetrical phthalocyanine via atom transfer radical polymerization and its photocatalytic oxidation of Rhodamine B, Polymer Chemistry (2011) 2, 2590.

DOI: 10.1039/c1py00308a

Google Scholar

[15] C. Boyer, A. Granville, T. P. Davis, V. Bulmus. Modification of RAFT-Polymers via Thiol-Ene Reactions: A General Route to Functional Polymers and New Architectures, J. Polym. Sci.: Part A: Polym. Chem. (2009) 47, 3773.

DOI: 10.1002/pola.23433

Google Scholar

[16] G. Moad, E. Rizzardo, S. H. Thang. Living Radical Polymerization by the RAFT Process, Aus. J. Chem. (2005), 58, 379.

DOI: 10.1071/ch05072

Google Scholar

[17] A. J. Convertine, N. Ayres, C. W. Scales, A. B. Lowe, C. L. McCormick. Facile, Controlled, Room-Temperature RAFT polymerization of N-Isopropylacrylamide, Biomacromolecules (2004) 5, 1177.

DOI: 10.1021/bm049825h

Google Scholar

[18] H. Willcock, R. K. O'Reilly. End group removal and modification of RAFT polymers, Polymer Chemistry (2010) 1, 149.

Google Scholar

[19] M. Li, P. De, S. R. Gondi, B. S. Sumerlin. End Group Transformations of RAFT-Generated Polymers with Bismaleimides: Functional Telechelics and Modular Block Copolymers, J. Polym. Sci.: Part A: Polym. Chem. (2008) 46, 5093.

DOI: 10.1002/pola.22837

Google Scholar

[20] A. García-Peñas, C. S. Biswas, W. Liang, Y. Wang, P. Yang, F. J. Stadler, Effect of hydrophobic interactions on lower critical solution temperature for poly (N-isopropylacrylamide-co-dopamine methacrylamide) copolymers, Polymers (2019) 11, 991.

DOI: 10.3390/polym11060991

Google Scholar

[21] H. S. Ashbaugh, M. E. Paulaitis, (2006). Monomer Hydrophobicity As A Mechanism For The LCST Behavior Of Poly (Ethylene Oxide) In Water, Ind. Eng. Chem. Res. (2006) 45, 5531.

DOI: 10.1021/ie051131h

Google Scholar

[22] Y. Ma, D. Wei, H. Yao, L. Wu, G. Chen. Synthesis, characterization and application of thermoresponsive polyhydroxyalkanoate graft poly(N-isopropylacrylamide). Biomacromolecules (2016) 17, 2680.

DOI: 10.1021/acs.biomac.6b00724

Google Scholar

[23] S. Kuo, J. Hong, Y. Huang, J. Chen, S. Fan, F. Ko, F. Chang, Star poly (N-Isopropylacrylamide) tethered to polyhedral oligomeric silsesquioxane (poss) nanoparticles by a combination of ATRP and click chemistry,  J. Nanomater. (2012) 1.

DOI: 10.1155/2012/749732

Google Scholar

[24] R. Coronado, S. Pekerar, A. T. Lorenzo, M. A. Sabino. Characterization of thermo-sensitive hydrogels based on Poly(N-isopropylacrylamide)/Hyaluronic Acid, Polymer Bulletin (2011) 67, 101.

DOI: 10.1007/s00289-010-0407-6

Google Scholar

[25] A. Velamakanni, D. L. Blackwell, D. Yang, S. Sonawane, S. Addagulla, J. S. Major, Synthesis and characterization of functionalized silane-based copolymers for thermally robust polymer – silica hybrids, Polym. Chem. (2010) 1, 916.

DOI: 10.1039/c0py00042f

Google Scholar

[26] S. F. Parker, Vibrational spectroscopy of N-phenylmaleimide, Spectrochim. Acta A. 63 (2006) 544.

Google Scholar

[27] P. Roach, D. McGarvey, M. Lees, C. Hoskins, Remotely triggered scaffolds for controlled release of pharmaceuticals, Int. J. Mol. Sci. (2013) 14, 8585.

DOI: 10.3390/ijms14048585

Google Scholar