Spark Plasma Sintering of TaN/TiAl Composites: Microstructure and Microhardness Study

Article Preview

Abstract:

Titanium aluminide (TiAl)-based materials have attracted much attention in the aerospace and automobile industries due to their attractive properties. Studying the microhardness of these materials as it relates to the as-sintered and heat-treated state is of interest in this article. TiAl and TiAl-based composites with varying additions of Tantalum nitride (TaN) content (2, 4, 6, 8 wt.%) were prepared by spark plasma sintering technique. The samples were sintered at 1150 °C, 100 C/min, 50 MPa, a dwell time of 10 mins, and fully dense characteristics as their relative densities were above 98 %. The microstructure and microhardness of the sintered samples were examined. Also, the sintered samples' microhardness was evaluated after the heat treatment process at 750 °C. It was observed that the relative density of the composites dropped at 2 and 8 wt.% addition of TaN, while the addition of TaN significantly increased hardness value in the as-sintered and heat-treated condition, from 304 HV to a maximum of 499 HV in the as-sintered state. The microstructures revealed that the reinforcement was segregated to the gamma phase, interlocked by the lamellar colonies.

You might also be interested in these eBooks

Info:

Pages:

69-77

Citation:

Online since:

July 2022

Export:

Price:

* - Corresponding Author

[1] W. Li, J. Liu, Y. Zhou, S. Wen, J. Tan, S. Li, Q. Wei, C. Yan, and Y. Shi, Texture evolution, phase transformation mechanism and nanohardness of selective laser melted Ti-45Al-2Cr-5Nb alloy during multi-step heat treatment process,, Intermetallics, 85 (2017) 130-138.

DOI: 10.1016/j.intermet.2017.01.016

Google Scholar

[2] D. V. Lazurenko, A. Stark, M. A. Esikov, J. Paul, I. A. Bataev, A. A. Kashimbetova, V. I. Mali, U. Lorenz, and F. Pyczak, Ceramic-Reinforced γ-TiAl-Based Composites: Synthesis, Structure, and Properties,, Materials, 12 (2019) 629.

DOI: 10.3390/ma12040629

Google Scholar

[3] B. Liu and Y. Liu, Powder metallurgy titanium aluminide alloys, in: M. Qian and F. H. Froes (Eds.), Titanium Powder Metallurgy, Butterworth-Heinemann, Boston, 2015, pp.515-531.

DOI: 10.1016/b978-0-12-800054-0.00027-7

Google Scholar

[4] J. W. Fergus, High Temperature Corrosion of Intermetallic Alloys, in: B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, H. Stott, (Eds.), Shreir's Corrosion,Elsevier, Oxford 2010, pp.646-667.

DOI: 10.1016/b978-044452787-5.09002-8

Google Scholar

[5] R. K. Gupta and B. Pant, Titanium aluminides, in: R. Mitra, (Eds.), Intermetallic Matrix Composites, Woodhead Publishing, 2018, pp.71-93.

DOI: 10.1016/b978-0-85709-346-2.00004-2

Google Scholar

[6] M. T. Perez-Prado and M. E. Kassner, Creep of Intermetallics, in: M. E. Kassner, (Eds.), Fundamentals of Creep in Metals and Alloys (Third Edition), Butterworth-Heinemann, Boston, 2015, pp.189-232.

DOI: 10.1016/b978-0-08-099427-7.00009-8

Google Scholar

[7] A. R. Annamalai, M. Srikanth, R. Varshney, M. Y. Ashokkumar, S. K. Patro, and C.-P. Jen, Microstructure Evolution and Mechanical Properties of Spark Plasma Sintered Manganese Addition on Ti-48Al-2Cr-2Nb Alloys,, Metals, 10, (2020) 1577.

DOI: 10.3390/met10121577

Google Scholar

[8] J. Gussone, Y.-C. Hagedorn, H. Gherekhloo, G. Kasperovich, T. Merzouk, and J. Hausmann, Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures,, Intermetallics, 66, (2015) 133-140.

DOI: 10.1016/j.intermet.2015.07.005

Google Scholar

[9] A. Taotao, Microstructure and Mechanical Properties of In-situ Synthesized Al2O3/TiAl Composites,, Chinese Journal of Aeronautics, 21, (2008) 559-564.

DOI: 10.1016/s1000-9361(08)60174-0

Google Scholar

[10] J. Shen, L. Hu, L. Zhang, W. Liu, A. Fang, and Y. Sun, Synthesis of TiAl/Nb composites with concurrently enhanced strength and plasticity by powder metallurgy,, Materials Science and Engineering: A, 795, (2020) 139997.

DOI: 10.1016/j.msea.2020.139997

Google Scholar

[11] M. Akhlaghi, S. A. Tayebifard, E. Salahi, and M. Shahedi Asl, Spark plasma sintering of TiAl–Ti3AlC2 composite,, Ceramics International, 44, (2018) 21759-21764.

DOI: 10.1016/j.ceramint.2018.08.272

Google Scholar

[12] W. Li, Y. Yang, J. Liu, Y. Zhou, M. Li, S. Wen, Q. Wei, C. Yan, and Y. Shi, Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting,, Acta Materialia, 136, (2017) 90-104.

DOI: 10.1016/j.actamat.2017.07.003

Google Scholar

[13] H. Zhu, W. Sun, F. Kong, X. Wang, Z. Song, and Y. Chen, Interfacial characteristics and mechanical properties of TiAl/Ti6Al4V laminate composite (LMC) fabricated by vacuum hot pressing,, Materials Science and Engineering: A, 742, (2019) 704-711.

DOI: 10.1016/j.msea.2018.07.086

Google Scholar

[14] C. Ma, D. Gu, D. Dai, H. Zhang, L. Du, and H. Zhang, Development of interfacial stress during selective laser melting of TiC reinforced TiAl composites: Influence of geometric feature of reinforcement,, Materials & Design, 157, (2018) 1-11.

DOI: 10.1016/j.matdes.2018.07.030

Google Scholar

[15] M. Zhou, R. Hu, J. Li, C. Yang, H. Liu, and X. Luo, Investigations of interfacial reaction and toughening mechanisms of Ta fiber-reinforced TiAl-matrix composites,, Materials Characterization, 183, (2022) 111584.

DOI: 10.1016/j.matchar.2021.111584

Google Scholar

[16] J. Li, R. Hu, M. Zhou, Z. Gao, Y. Wu, and X. Luo, High temperature micromechanical behavior of Ti2AlN particle reinforced TiAl based composites investigated by in-situ high-energy X-ray diffraction,, Materials & Design, 212, (2021) 110225.

DOI: 10.1016/j.matdes.2021.110225

Google Scholar

[17] D. Demirskyi, O. Vasylkiv, and K. Yoshimi, Allotropic strengthening and in situ phase transformations during ultra-high-temperature flexure of bulk tantalum nitride,, Materials Science and Engineering: A, 826, (2021) 141954.

DOI: 10.1016/j.msea.2021.141954

Google Scholar

[18] J. Corona-Gomez, T. A. Jack, R. Feng, and Q. Yang, Wear and corrosion characteristics of nano-crystalline tantalum nitride coatings deposited on CoCrMo alloy for hip joint applications,, Materials Characterization, 182, (2021) 111516.

DOI: 10.1016/j.matchar.2021.111516

Google Scholar

[19] J. Jenis Samuel, P. Krishna Kumar, D. Dinesh Kumar, A. M. Kamalan Kirubaharan, T. Arjun Raj, and P. Aravind, Effect of substrate temperature and preferred orientation on the tribological properties of Tantalum nitride coatings,, Materials Today: Proceedings, 44, (2021) 4404-4408.

DOI: 10.1016/j.matpr.2020.10.576

Google Scholar

[20] J. M. Kapopara, K. V. Chauhan, N. N. Jariwala, A. A. Gandhi, and S. K. Rawal, Development and analysis of tantalum nitride coatings prepared by DC reactive sputtering,, Materials Today: Proceedings, 5, (2018) 20899-20903.

DOI: 10.1016/j.matpr.2018.06.477

Google Scholar

[21] C.-C. Chang, Y.-T. Hsiao, Y.-L. Chen, C.-Y. Tsai, Y.-J. Lee, P.-H. Ko, and S.-Y. Chang, Lattice distortion or cocktail effect dominates the performance of Tantalum-based high-entropy nitride coatings,, Applied Surface Science, 577, (2022) 151894.

DOI: 10.1016/j.apsusc.2021.151894

Google Scholar

[22] B. J. Babalola, O. O. Ayodele, M. A. Awotunde, S. O. Akinwamide, and P. A. Olubambi, Microstructure and mechanical properties of Ni-17Cr-xCo ternary alloys fabricated via field-assisted sintering,, Materials Letters, 302, (2021) 130404.

DOI: 10.1016/j.matlet.2021.130404

Google Scholar

[23] L. Ge, G. Subhash, R. H. Baney, and J. S. Tulenko, Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering,, Journal of the European Ceramic Society, 34, (2014) 1791-1801.

DOI: 10.1016/j.jeurceramsoc.2014.01.018

Google Scholar

[24] B. J. Babalola, O. J. Akinribide, O. S. Akinwamide, and P. A. Olubambi, Mechanical and tribological studies of sintered nickel-based ternary alloys,, World Journal of Engineering, (2021).

DOI: 10.1108/wje-06-2021-0310

Google Scholar

[25] M. Farvizi, M. K. Javan, M. R. Akbarpour, and H. S. Kim, Fabrication of NiTi and NiTi-nano Al2O3 composites by powder metallurgy methods: Comparison of hot isostatic pressing and spark plasma sintering techniques,, Ceramics International, 44, (2018) 15981-15988.

DOI: 10.1016/j.ceramint.2018.06.025

Google Scholar

[26] B. Babalola, M. Shongwe, S. Jeje, A. Rominiyi, O. O. Ayodele, and P. A. Olubambi, Influence of spark plasma sintering temperature on the densification and micro-hardness behaviour of Ni-Cr-Al alloy,, in IOP Conference Series: Materials Science and Engineering, (2019), 012032.

DOI: 10.1088/1757-899x/655/1/012032

Google Scholar

[27] O. O. Ayodele, M. A. Awotunde, M. B. Shongwe, B. A. Obadele, B. J. Babalola, and P. A. Olubambi, Densification and microstructures of hybrid sintering of titanium alloy,, Materials Today: Proceedings, (2020).

DOI: 10.1016/j.matpr.2019.12.297

Google Scholar

[28] A. Y. Al-Maharma, S. P. Patil, and B. Markert, Effects of porosity on the mechanical properties of additively manufactured components: a critical review,, Materials Research Express, 7, (2020) 122001.

DOI: 10.1088/2053-1591/abcc5d

Google Scholar

[29] S. Aqida, M. I. Ghazali, and J. Hashim, Effect of porosity on mechanical properties of metal matrix composite: an overview,, Jurnal Teknologi,(2004) 17-32.

DOI: 10.11113/jt.v40.395

Google Scholar

[30] V. Tyrpekl, C. Berkmann, M. Holzhäuser, F. Köpp, M. Cologna, T. Wangle, and J. Somers, Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials,, Review of Scientific Instruments, 86, (2015) 023904.

DOI: 10.1063/1.4913529

Google Scholar

[31] M. Shongwe, M. Ramakokovhu, S. Diouf, M. Durowoju, B. Obadele, R. Sule, L. Lethabane, and P. Olubambi, Effect of starting powder particle size and heating rate on spark plasma sintering of Fe Ni alloys,, Journal of Alloys and compounds, 678, (2016) 241-248.

DOI: 10.1016/j.jallcom.2016.03.270

Google Scholar

[32] M. R. Mphahlele, E. A. Olevsky, and P. A. Olubambi, Spark plasma sintering of near net shape titanium aluminide: A review, in: G. Cao, C. Estournès, J. Garay, and R. Orrù, (Eds.), Spark Plasma Sintering, Elsevier, 2019, pp.281-299.

DOI: 10.1016/b978-0-12-817744-0.00012-x

Google Scholar

[33] C. Zhang, Y. Pan, T. Hui, W. Xu, S. Zhang, M. A. Mughal, J. Zhang, and X. Lu, The sintering densification, microstructure and mechanical properties of Ti–48Al–2Cr–2Nb by a small addition of Sn–Al powder,, Journal of Materials Research and Technology, 15, (2021) 6947-6955.

DOI: 10.1016/j.jmrt.2021.11.096

Google Scholar