Effect of Microstructure Change on Mechanical Properties after High Temperature Forming of Ti-6Al-4V Alloy

Article Preview

Abstract:

Ti-6Al-4V alloy is not easy to machine complicated shapes due to its low thermal conductivity, so high-temperature forming techniques such as ring-rolling are being applied. When this high-temperature forming technology is applied, the microstructure is greatly changed by process variables, and the mechanical properties of the forming product are also different accordingly. In particular, in the case of the Widmanst tten structure, α lamellar spacing and colony size have a great influence on mechanical properties. Therefore, in this study, the most suitable process conditions were selected by performing a high-temperature compression test to apply the ring-rolling process to the Ti-6Al-4V alloy used as an aerospace material. After that, the microstructure of the forming product was observed, the effects of α lamellar spacing and colony size on the mechanical properties were confirmed, and the correlation between mechanical properties and microstructure was evaluated based on this.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 349)

Pages:

3-8

Citation:

Online since:

September 2023

Export:

Price:

* - Corresponding Author

[1] R. G. Guan, Y. T. Je, Z. Y. Zhao and C. S. Lee: Materials and Design Vol. 36 (2012), pp.796-803.

Google Scholar

[2] D. G. Lee, S. H. Lee, C. S. Lee and S. M. Hur: Met. Mater. Trans. A Vol. 34A (2003), pp.2541-2548.

Google Scholar

[3] A. Saboori, A. Abdi, S. A. Fatemi, G. Marchese and S. Biamino: Mater. Sci. Engineering A Vol. 792 (2020), p.139822.

Google Scholar

[4] H. W. Lee, B. O. Kong and S. E. Kim: J. Met. Mater Vol. 60 (2022), pp.282-290.

Google Scholar

[5] J.T. Yeom, J. H. Kim and N. K. Park: J. Mater. Process. Technol. Vol. 187-188 (2007), pp.747-751.

Google Scholar

[6] A. Bhardwaj, N. Gohil, A. K. Gupta and S. S. Satheesh Kumar: Mater. Sci. Eng. A Vol. 802 (2020), p.140651.

Google Scholar

[7] H. W. Lee, B. O. Kong, S. E. Kim, Y. K. Joo, S. H. Yoon and J. H. Lee: Korean J. Met. Mater. Vol. 60(4) (2022), pp.282-290.

Google Scholar

[8] D. G. Lee, S. H. Lee, C. S. Lee and S. M. Hur: J. Kor. Inst. Met. Mater. Vol. 39 (12) (2001), pp.1406-1413.

Google Scholar

[9] O. N. Senkov, J. J. Valencia, S. V. Senkova, M. Cavusoglu and F.H. Froes: Mater. Sci. Technol. Vol. 18:12 (2002), pp.1471-1478.

Google Scholar

[10] W. Xiang, L. Jia, A. Kei and D. Guy: Meccanica Vol. 56 (2021), pp.1129-1146.

Google Scholar

[11] E. W. Lui, W. Xu, A. Pateras, M. Qian and M. Brandt: Met. Mater. Society Vol. 69 (2017), pp.2679-2683.

Google Scholar

[12] R. Ding and Z. X. Guo: Mater. Sci. Engineering A Vol. 365 (2004), pp.172-179.

Google Scholar

[13] I. Sen, S. Tamirisakandala, D. B. Miracle, U. Ramamurty: Acta Mater Vol. 55 (2007), pp.4983-4993.

Google Scholar

[14] H. Yu, J. Yang, J. Yin, Z. Wang and X. Zeng: Mater. Sci. Engineering A Vol. 695 (2017), pp.92-100.

Google Scholar

[15] P. A. Kobryn, S. L. Semiatin: In 2001 International Solid Freeform Fabrication Symposium (2001).

Google Scholar

[16] G. Lutjering: Mater. Sci. Eng. A Vol. 243 (1-2) (1998), pp.32-45.

Google Scholar