Comparative Study of the Mechanical Properties of Spot Welded Joints

Article Preview

Abstract:

This work presents a comparative study of the mechanical properties of resistance spot welded joints (RSW). RSW is widely used in sheet joining. Hence, the mechanical properties and their strength are presented. The main parameter is the welding current that has a big role on the heat generation and joint strength. The strength improvement due to the current increasing is regular and more effective than the weld time and the electrode pressure. Stainless steel has good weldability in sheet form. Galvanized steel, aluminum and carbon steel have been widely spot-welded. Moreover, dissimilar materials are also spot weldable where the two sheets of different metals can be joined. For the same sheet thickness at 1 mm, it was shown the shear strength of mild steel 3.8 KN, while for aluminum 1.4 KN this mean the shear strength of mild steel higher than aluminum. For the same metals, the increasing of the thickness will increase the strength. This is due to the weld area increasing. All the values were taken at the pull-out fracture condition. Hence, the suitable weld area at the welding condition was assumed. Fatigue strength for some metals has been presented. Fatigue strength of MS1300 is higher than those of steel DQSK, and steel DP800 at the for 1.6 mm thickness and stress ratio, R= 0.1. Because of the thickness, it has a minor effect on the fatigue properties of spot welded joints.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1079)

Pages:

21-28

Citation:

Online since:

December 2022

Export:

Price:

* - Corresponding Author

[1] D. Özyürek, An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel,, Mater. Des., vol. 29, no. 3, p.597–603, Jan. 2008,.

DOI: 10.1016/j.matdes.2007.03.008

Google Scholar

[2] A. M. Al-Mukhtar, Spot Weldabaility Principles and Considerations. Südwestdeutscher Verlag Für Hochschulschriften Ag Co. Kg, (2015).

Google Scholar

[3] K. M. Daws, A.-K. A. Al-Douri, and A. M. Al-Mukhtar, Investigation of Some Welding Parameters in Resistance Spot Welding of Austenitic Stainleass Steel,, Coll. Eng. Journal, Baghdad Univ. Iraq, (2003).

Google Scholar

[4] A. M. Al-Mukhtar, Spot Welding Efficiency and It ' S Effect on Structural Strength of Gas Generator and Its Performance,, Baghdad University, (2002).

Google Scholar

[5] A. M. Al-Mukhtar, Aircraft Fuselage Cracking and Simulation,, Procedia Struct. Integr., vol. 28, p.124–131, 2020,.

DOI: 10.1016/j.prostr.2020.10.016

Google Scholar

[6] K. Chan, Weldability and degradation study of coated electrodes for resistance spot welding,, A thesis Present. to Univ. Waterloo fulfillment thesis Requir. degree Master Appl. Sci. Mech. Eng. Waterloo, Ontario, Canada© Kevin Randall Chan, (2005).

Google Scholar

[7] Z. Lei, H. Kang, and Y. Liu, Finite Element Analysis for Transient Thermal Characteristics of Resistance Spot Welding Process with Three Sheets Assemblies,, Procedia Eng., vol. 16, p.622–631, Jan. 2011,.

DOI: 10.1016/j.proeng.2011.08.1133

Google Scholar

[8] and J. W. M. J.M. Sawhill, JR.H. Watanable, Spot Weldability of Mn Mo Cb, V-N and SAE 1008 Steels,, (1977).

Google Scholar

[9] J. W. Elmer, J. Wong, and T. Ressler, In-situ observations of phase transformations during solidification and cooling of austenitic stainless steel welds using time-resolved X-ray diffraction,, Scr. Mater., vol. 43, no. 8, p.751–757, (2000).

DOI: 10.1016/s1359-6462(00)00481-4

Google Scholar

[10] J. B. Shamsul and M. M. Hisyam, Study of spot welding of austenitic stainless steel type 304,, J. Appl. Sci. Res., vol. 3, no. 11, p.1494–1499, (2007).

Google Scholar

[11] S. B. Behravesh, H. Jahed, and S. Lambert, Characterization of magnesium spot welds under tensile and cyclic loadings,, Mater. Des., vol. 32, no. 10, p.4890–4900, 2011,.

DOI: 10.1016/j.matdes.2011.06.001

Google Scholar

[12] T. P. Kasih, A. Kharisma, and A. Suryanto, Optimization of spot welding process parameters on dissimilar and unequal thickness of metal sheets by using Taguchi technique,, IOP Conf. Ser. Earth Environ. Sci., vol. 195, no. 1, 2018,.

DOI: 10.1088/1755-1315/195/1/012036

Google Scholar

[13] S. M. Manladan, F. Yusof, S. Ramesh, M. Fadzil, Z. Luo, and S. Ao, A review on resistance spot welding of aluminum alloys,, Int. J. Adv. Manuf. Technol., vol. 90, no. 1–4, p.605–634, 2017,.

DOI: 10.1007/s00170-016-9225-9

Google Scholar

[14] M. Raut and V. Achwal, Optimization of spot welding process parameters for maximum tensile shear strength,, Int. J. Mech. Eng. Robot. Res., vol. 3, no. 4, p.506–517, (2014).

Google Scholar

[15] N. Kahraman, The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets,, Mater. Des., vol. 28, no. 2, p.420–427, Jan. 2007, doi: 10.1016/ j.matdes.2005.09.010.

DOI: 10.1016/j.matdes.2005.09.010

Google Scholar

[16] M. V. Nogin, Spot Welding Hot Rolled Steel Without Prior Cleaning,, Weld. Prouduction, vol. 12, no. 3, p.1965, (1965).

Google Scholar

[17] H. and G. K. Nies, Formation of cracks in galvanized steel structures,, Leonardo, (2007).

Google Scholar

[18] S. and yoshitake Watanabe, Toichi, Sofue, Tadashi, Spot welding of hot rolled-dipped galvanized steel sheet,, J. Japan Weld. Socity, vol. 6, no. 40, p.1988, (1988).

DOI: 10.2207/qjjws.6.480

Google Scholar

[19] J. M. Sawhill and J. C. Baker, Spot weldability of high-strength sheet steels,, Weld. J., vol. 59, no. 1, pp. 19S-30S, (1980).

Google Scholar

[20] D. and Bargrad, Resistance spot welding of high strength low alloy steel (HSLA) sheet, a survey,, Weld. world, vol. 23, no. 5/6, p.1985, (1985).

Google Scholar

[21] L. Han, M. Thornton, D. Boomer, and M. Shergold, Effect of aluminium sheet surface conditions on feasibility and quality of resistance spot welding,, J. Mater. Process. Technol., vol. 210, no. 8, p.1076–1082, Jun. 2010,.

DOI: 10.1016/j.jmatprotec.2010.02.019

Google Scholar

[22] R. S. Florea, D. J. Bammann, a. Yeldell, K. N. Solanki, and Y. Hammi, Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy,, Mater. Des., vol. 45, p.456–465, Mar. 2013,.

DOI: 10.1016/j.matdes.2012.08.053

Google Scholar

[23] D. K. Aidun and R. W. Bennett, Effect of resistance welding variables on the strength of spot welded 6061-T6 aluminum alloy,, (1985).

Google Scholar

[24] R. Qiu, C. Iwamoto, and S. Satonaka, Interfacial microstructure and strength of steel/aluminum alloy joints welded by resistance spot welding with cover plate,, J. Mater. Process. Technol., vol. 209, no. 8, p.4186–4193, Apr. 2009, doi: http://dx.doi.org/10.1016/ j.jmatprotec.2008.11.003.

DOI: 10.1016/j.jmatprotec.2008.11.003

Google Scholar

[25] A. W. S. R. W. Committee and E. A. Fenton, Recommended Practices for Resistance Welding. American Welding Society, (1966).

Google Scholar

[26] A. M. Al-Mukhtar, T. Rahman, and Q. M. Doos, Spot Welding Joint's Fracture Behavior and Fundamental,, in Fracture, Fatigue and Wear, Springer, 2019, p.18–27.

DOI: 10.1007/978-981-13-0411-8_2

Google Scholar

[27] A. Al-Mukhtar and Q. Doos, Cracking Phenomenon in Spot Welded Joints of Austenitic Stainless Steel,, Mater. Sci. Appl., vol. 4, no. October, p.656–662, (2013).

DOI: 10.4236/msa.2013.410081

Google Scholar

[28] A. M. Al-Mukhtar and Q. Doos, The Spot Weldability of Carbon Steel Sheet,, Adv. Mater. Sci. Eng., vol. 2013, p.1–6, 2013,.

DOI: 10.1155/2013/146896

Google Scholar

[29] A. M. Al-Mukhtar, Review of Resistance Spot Welding Sheets: Processes and Failure Mode,, Adv. Eng. Forum, vol. 17, p.31–57, Jun. 2016,.

DOI: 10.4028/www.scientific.net/aef.17.31

Google Scholar

[30] C. Rajarajan, P. Sivaraj, T. Sonar, S. Raja, and N. Mathiazhagan, Resistance spot welding of advanced high strength steel for fabrication of thin-walled automotive structural frames,, Forces Mech., vol. 7, no. February, p.100084, 2022,.

DOI: 10.1016/j.finmec.2022.100084

Google Scholar

[31] X. Yuan, C. Li, J. Chen, X. Li, X. Liang, and X. Pan, Resistance spot welding of dissimilar DP600 and DC54D steels,, J. Mater. Process. Technol., vol. 239, p.31–41, Jan. 2017, doi: http://dx.doi.org/10.1016/j.jmatprotec.2016.08.012.

DOI: 10.1016/j.jmatprotec.2016.08.012

Google Scholar

[32] A. M. Al-Mukhtar, S. A. K. Al-Jumaili, and A. H. F. Al-Jlehawy, Effect of Heat Treatments on 302 Austenitic Stainless Steel Spot Weld,, Adv. Eng. Forum, vol. 29, p.19–25, Aug. 2018,.

DOI: 10.4028/www.scientific.net/aef.29.19

Google Scholar

[33] S. K. N. Sinhgad, Shear Strength Prediction of Multi-Spot Welded Lap Shear Specimen through Experimentation and Validation by FEM Prasad P Kulkarni,, vol. 4, no. 4, p.80–87, (2014).

Google Scholar

[34] I. K. Al Naimi, M. H. Al Saadi, K. M. Daws, and N. Bay, Influence of surface pretreatment in resistance spot welding of aluminum AA1050,, Prod. Manuf. Res., vol. 3, no. 1, p.185–200, 2015,.

DOI: 10.1080/21693277.2015.1030795

Google Scholar

[35] B. Wang et al., Investigation on fatigue fracture behaviors of spot welded Q&P980 steel,, Int. J. Fatigue, vol. 66, p.20–28, (2014).

DOI: 10.1016/j.ijfatigue.2014.03.004

Google Scholar

[36] G. Wang and M. E. Barkey, Investigating the spot weld fatigue crack growth process using X-ray imaging,, Weld. J., vol. 85, no. 4, p.84–90, (2006).

Google Scholar

[37] T. K. Pal and K. Chattopadhyay, Resistance spot weldability and high cycle fatigue behaviour of martensitic (M190) steel sheet,, Fatigue Fract. Eng. Mater. Struct., vol. 34, no. 1, p.46–52, (2011).

DOI: 10.1111/j.1460-2695.2010.01489.x

Google Scholar

[38] L. Chen et al., Investigation on shearing strength of resistance spot-welded joints of dissimilar steel plates with varying welding current and time,, J. Mater. Res. Technol., vol. 16, p.1021–1028, 2022,.

DOI: 10.1016/j.jmrt.2021.12.079

Google Scholar

[39] S. H. Lin, J. Pan, P. Wung, and J. Chiang, A fatigue crack growth model for spot welds under cyclic loading conditions,, Int. J. Fatigue, vol. 28, no. 7, p.792–803, 2006,.

DOI: 10.1016/j.ijfatigue.2005.08.003

Google Scholar

[40] K. Vadivel, Investigation of Fatigue Loading on Galvanized Iron AISI 4340 Sheet Metal using Spot Welded Joint in Finite Element Analysis,, Int. J. Res. Appl. Sci. Eng. Technol., vol. 7, no. 11, p.811–815, 2019,.

DOI: 10.22214/ijraset.2019.11136

Google Scholar

[41] M. K. Wahid, M. N. Muhammed Sufian, and M. S. Firdaus Hussin, Effect of fatigue test on spot welded structural joint,, J. Teknol., vol. 79, no. 5–2, p.95–99, 2017,.

DOI: 10.11113/jt.v79.11290

Google Scholar

[42] H. T. Kang, A. Khosrovaneh, H. Hu, and U. De Souza, A fatigue prediction method for spot welded joints,, SAE Technical Paper, (2013).

DOI: 10.4271/2013-01-1208

Google Scholar