An Innovation of Black Tea as a Substitute for the Use of Positive Contrast Media in CT Urography in Hydronephrosis Cases: Case Study

Article Preview

Abstract:

The use of contrast media on CT scans needs to be done to see the urinary tract clearly. Contrast media itself has side effects that can harm patients if they have allergies. The purpose of this study was to determine if black tea can be used as a natural contrast medium to replace iodine contrast media in CT urography. This study used a case study method by observing a patient diagnosed with hydronephrosis who underwent CT urography. Prior to the examination, the patient had drunk 600 ml of black tea. Examination using CT Scan GE Revolution ACT 32 slices with axial, coronal and sagittal images. The results of the image are then taken to a radiologist and a radiographer to assess the image quality and anatomical clarity in the form of an interview. The results showed that the patient drank 600 ml of plain black tea on a CT-Scan urography examination in cases of Hydronephrosis could open or clarify the ureteral tract, making it easier for doctors to read out radiographs. The use of tea was able to reveal the ureteral groove and facilitate tracking. Black tea with natural ingredients has the opportunity to be a substitute for iodine contrast media which uses chemicals in CT Urography so as to reduce the potential for allergies and side effects to patients and is inexpensive. Studies related to the ratio of black tea and water can be carried out to obtain an optimal density value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-78

Citation:

Online since:

March 2023

Export:

Price:

* - Corresponding Author

[1] D. Han et al., Preliminary study on the differentiation between parapelvic cyst and hydronephrosis with non-calculous using only pre-contrast dual-energy spectral CT scans,, Br. J. Radiol., vol. 90, no. 1073, 2017,.

DOI: 10.1259/bjr.20160632

Google Scholar

[2] A. Nakamoto et al., Ultra-high-resolution CT urography: Importance of matrix size and reconstruction technique on image quality,, Eur. J. Radiol., vol. 130, p.109148, 2020, doi: https://doi.org/10.1016/j.ejrad.2020.109148.

DOI: 10.1016/j.ejrad.2020.109148

Google Scholar

[3] S. G. Silverman, J. R. Leyendecker, and E. S. Amis, What is the current role of CT urography and MR urography in the evaluation of the urinary tract?,, Radiology, vol. 250, no. 2, p.309–323, 2009,.

DOI: 10.1148/radiol.2502080534

Google Scholar

[4] A. J. Molen, N. C. Cowan, U. G. Mueller-Lisse, C. C. A. Nolte-Ernsting, S. Takahashi, and R. H. Cohan, CT urography: Definition, indications and techniques. A guideline for clinical practice,, Eur. Radiol., vol. 18, no. 1, p.4–17, 2008,.

DOI: 10.1007/s00330-007-0792-x

Google Scholar

[5] T. Alelign and B. Petros, Kidney Stone Disease: An Update on Current Concepts.,, Adv. Urol., vol. 2018, p.3068365, 2018,.

Google Scholar

[6] M. M. Maher, M. K. Kalra, S. Rizzo, P. R. Mueller, and S. Saini, Multidetector CT Urography in Imaging of the Urinary Tract in Patients with Hematuria,, Korean J Radiol, vol. 5, no. 1, p.1–10, Mar. 2004, [Online]. Available: https://doi.org/10.3348/kjr.2004.5.1.1.

DOI: 10.3348/kjr.2004.5.1.1

Google Scholar

[7] P. A. M. de Wit, J. A. W. Tielbeek, P. R. van Diepen, I. Oulad Abdennabi, L. F. M. Beenen, and S. Bipat, A prospective study comparing water only with positive oral contrast in patients undergoing abdominal CT scan,, Sci. Rep., vol. 10, no. 1, p.6813, 2020,.

DOI: 10.1038/s41598-020-63838-3

Google Scholar

[8] Y. Cheng et al., The Added Value of Virtual Unenhanced Images Obtained From Dual-energy CT Urography in the Detection and Measurement of Urinary Stone,, Urology, vol. 166, p.118–125, 2022, doi: https://doi.org/10.1016/j.urology.2022.02.029.

DOI: 10.1016/j.urology.2022.02.029

Google Scholar

[9] S. Harieaswar, A. Rajesh, Y. Griffin, R. Tyagi, and B. Morgan, Routine use of positive oral contrast material is not required for oncology patients undergoing follow-up multidetector CT.,, Radiology, vol. 250, no. 1, p.246–253, Jan. 2009,.

DOI: 10.1148/radiol.2493080353

Google Scholar

[10] A. Payor et al., Efficacy of noncontrast computed tomography of the abdomen and pelvis for evaluating nontraumatic acute abdominal pain in the emergency department,, J. Emerg. Med., vol. 49, no. 6, p.886–892, 2015,.

DOI: 10.1016/j.jemermed.2015.06.062

Google Scholar

[11] G. J. Nadolski and S. W. Stavropoulos, Contrast alternatives for iodinated contrast allergy and renal dysfunction: Options and limitations,, J. Vasc. Surg., vol. 57, no. 2, p.593–598, 2013,.

DOI: 10.1016/j.jvs.2012.10.009

Google Scholar

[12] S. A. Razavi, J.-O. Johnson, M. T. Kassin, and K. E. Applegate, The impact of introducing a no oral contrast abdominopelvic CT examination (NOCAPE) pathway on radiology turn around times, emergency department length of stay, and patient safety.,, Emerg. Radiol., vol. 21, no. 6, p.605–613, Dec. 2014,.

DOI: 10.1007/s10140-014-1240-2

Google Scholar

[13] J. W. Uyeda, H. Yu, V. Ramalingam, A. P. Devalapalli, J. A. Soto, and S. W. Anderson, Evaluation of Acute Abdominal Pain in the Emergency Setting Using Computed Tomography Without Oral Contrast in Patients With Body Mass Index Greater Than 25.,, J. Comput. Assist. Tomogr., vol. 39, no. 5, p.681–686, 2015,.

DOI: 10.1097/rct.0000000000000277

Google Scholar

[14] F. Bermana, CO2 Contrast as Alternative Media Contrast for Renal Insufficiency Patient in Angiography: An Evidence Based Case Report,, New Ropanasuri J. Surg., vol. 6, no. 1, p.2–4, 2021,.

DOI: 10.7454/nrjs.v6i1.1096

Google Scholar

[15] F. Scalise, E. Novelli, C. Auguadro, V. Casali, M. Manfredi, and R. Zannoli, Automated carbon dioxide digital angiography for lower-limb arterial disease evaluation: safety assessment and comparison with standard iodinated contrast media angiography.,, J. Invasive Cardiol., vol. 27, no. 1, p.20–26, Jan. (2015).

Google Scholar

[16] R. Solomon, C. Biguori, and M. Bettmann, Selection of contrast media,, Kidney Int., vol. 69, no. SUPPL. 100, pp. S39–S45, 2006,.

DOI: 10.1038/sj.ki.5000373

Google Scholar

[17] P. Bombiński, M. Brzewski, S. Warchol, A. Biejat, M. Banasiuk, and M. Gołębiowski, Influence of diuretic (furosemide) on contrast medium distribution in computed tomography urography of high-grade hydronephrosis in children.,, Cent. Eur. J. Urol., vol. 71, no. 4, p.476–480, 2018,.

DOI: 10.5173/ceju.2018.1742

Google Scholar

[18] O. Portnoy, L. Guranda, S. Apter, D. Eiss, M. M. Amitai, and E. Konen, Optimization of 64-MDCT urography: Effect of dual-phase imaging with furosemide on collecting system opacification and radiation dose,, Am. J. Roentgenol., vol. 197, no. 5, p.882–886, 2011,.

DOI: 10.2214/ajr.11.6965

Google Scholar

[19] A. Susilowati, Diuretic Effect of the Aqueous Extract of Green Tea Leaves,, vol. 15, no. IcoSIHSN, p.33–36, 2019,.

DOI: 10.2991/icosihsn-19.2019.8

Google Scholar

[20] J. M. Hodgson and K. D. Croft, Tea flavonoids and cardiovascular health,, Mol. Aspects Med., vol. 31, no. 6, p.495–502, 2010, doi: https://doi.org/10.1016/j.mam.2010.09.004.

DOI: 10.1016/j.mam.2010.09.004

Google Scholar

[21] E. J. Gardner, C. H. S. Ruxton, and A. R. Leeds, Black tea - Helpful or harmful? A review of the evidence,, Eur. J. Clin. Nutr., vol. 61, no. 1, p.3–18, 2007,.

DOI: 10.1038/sj.ejcn.1602489

Google Scholar

[22] C. H. Ruxton and V. A. Hart, Black tea is not significantly different from water in the maintenance of normal hydration in human subjects: Results from a randomised controlled trial,, Br. J. Nutr., vol. 106, no. 4, p.588–595, 2011,.

DOI: 10.1017/s0007114511000456

Google Scholar

[23] M. S. D'Souza, E. N. Howell, and S. D. Ray, Radiological contrast agents and radiopharmaceuticals, 1st ed., vol. 41. Elsevier B.V., (2019).

Google Scholar

[24] A. Sethi, X-Rays: Interaction with Matter,, Encycl. Med. Devices Instrum., p.590–599, 2006,.

Google Scholar

[25] G. Lloyd-Jones, Basics of X-ray Physics,, Radiology Masterclass, 2016. https://www.radiologymasterclass.co.uk/tutorials/physics/x-ray_physics_densities#top_2nd_img (accessed Sep. 30, 2022).

Google Scholar

[26] G. A. Wiguna, G. B. Suparta, and A. C. Louk, 3D micro-radiography imaging for quick assessment on small specimen,, Adv. Mater. Res., vol. 896, p.681–686, 2014,.

DOI: 10.4028/www.scientific.net/amr.896.681

Google Scholar

[27] A. Murphy and Y. Maharaj, X-ray interaction with matter,, Radiopaedia.org, Jul. 2016,.

Google Scholar

[28] B. Nett, X-ray attenuation of tissues [thickness, atomic number] for Radiologic Technologists,, How Radiology Works LLC, 2022. https://howradiologyworks.com/x-ray-attenuation-of-tissues/ (accessed Oct. 01, 2022).

Google Scholar

[29] B. M. Hien Vu-Nguyen, Radiographic Density of Selected Materials at Different Thicknesses,, Sandia Natl. Lab., 2015, [Online]. Available: https://www.osti.gov/servlets/purl/1307265.

Google Scholar

[30] S. Scheiner, C. Hellmich, C. Müller, L. Bonitz, and C. Kober, X-ray physics- and bone composition-based estimation of thickness characteristics from clinical mandibular radiographs,, Comput. Med. Imaging Graph., vol. 45, p.36–46, 2015,.

DOI: 10.1016/j.compmedimag.2015.06.005

Google Scholar

[31] P. D. Mc Laughlin, L. Crush, M. M. Maher, and O. J. O'Connor, Recent developments in computed tomography for urolithiasis: Diagnosis and characterization,, Adv. Urol., vol. 2012, no. 1, 2012,.

DOI: 10.1155/2012/606754

Google Scholar

[32] A. Hamimi and M. El Azab, MSCT renal stone protocol; Dose penalty and influence on management decision of patients: Is it really worth the radiation dose?,, Egypt. J. Radiol. Nucl. Med., vol. 47, no. 1, p.319–324, 2016,.

DOI: 10.1016/j.ejrnm.2015.11.001

Google Scholar

[33] E. Vetrano, D. Giambelluca, M. Midiri, M. Vella, and G. Salvaggio, Images - Computed tomography urographic appearance of traumatic rupture of renal cyst into the pyelocaliceal system,, Can. Urol. Assoc. J., vol. 14, no. 3, p.6–11, 2020,.

DOI: 10.5489/cuaj.5937

Google Scholar

[34] F. Khan, M. F. Haider, M. K. Singh, P. Sharma, T. Kumar, and E. N. Neda, A comprehensive review on kidney stones, its diagnosis and treatment with allopathic and ayurvedic medicines,, Urol. Nephrol. Open Access J., vol. 7, no. 4, 2019,.

DOI: 10.15406/unoaj.2019.07.00247

Google Scholar

[35] M. Knauth, Radiological imaging of the kidney,, La radiologia medica, vol. 117, no. 7. Springer Heidelberg, New York, p.1268–1269, 2014,.

Google Scholar

[36] B. Y. Lee, J. J. Ok, A. A. A. Elsayed, Y. Kim, and D. H. Han, Preparative fasting for contrast-enhanced CT: Reconsideration,, Radiology, vol. 263, no. 2, p.444–450, 2012,.

DOI: 10.1148/radiol.12111605

Google Scholar

[37] I. G. Lupescu and O. L. Marica, CT urography: how, when, why?,, Issn 1223-0650, vol. 11, no. 258, p.7–10, (2012).

Google Scholar

[38] S. Yudha, Benefits of Steeping Black Tea As a Negative Contrast Medium on Ct Urography Examination,, J. Appl. Heal. Manag. Technol., vol. 2, no. 2, p.70–77, 2020,.

DOI: 10.31983/jahmt.v2i2.5697

Google Scholar

[39] R. Grosjean et al., Pitfalls in urinary stone identification using CT attenuation values: Are we getting the same information on different scanner models?,, Eur. J. Radiol., vol. 82, no. 8, p.1201–1206, 2013,.

DOI: 10.1016/j.ejrad.2013.02.020

Google Scholar

[40] P. J. Pickhardt, Positive oral contrast material for abdominal CT: Current clinical indications and areas of controversy,, Am. J. Roentgenol., vol. 215, no. 1, p.69–78, 2020,.

DOI: 10.2214/ajr.19.21989

Google Scholar

[41] J. M. Sung et al., Evaluation of a Diuresis Enhanced Non-Contrast Computed Tomography for Kidney Stones Protocol to Maximize Collecting System Distention,, J. Endourol., vol. 34, no. 3, p.255–261, 2020,.

DOI: 10.1089/end.2019.0719

Google Scholar

[42] U. S. Alwis et al., Impact of food and drinks on urine production: A systematic review,, Int. J. Clin. Pract., vol. 74, no. 9, 2020,.

Google Scholar