Constructal Design of a Two Ramps Overtopping Wave Energy Converter Integrated into a Breakwater: Effect of the Vertical Distance between the Ramps over its Performance

Article Preview

Abstract:

A two-dimensional numerical study about the influence of a vertical distance between two ramps of an Overtopping Device Wave Energy Converter (OTD-WEC) integrated into a breakwater in the city of São José do Norte, Rio Grande do Sul, Brazil was analyzed. The main purpose was to evaluate the influence of the vertical distance between the two ramps (Hg) of OTD-WEC, on the average overtopping dimensionless flow () using the Constructal Design for the geometric evaluation defining: 1) degree of freedom, (Hg), and 2) constraints, horizontal distance between the ramps (Lg), ratio between the height and length of the ramps (H1/L1 and H2/L2), area as a function of the wave parameters (Awave), areas of the ramps (Ar,i), maximum ramp height (fixed as half of the significant wave height (HS/2) at the MWL) and area fractions of the ramps (φi). The equations of conservation of mass, momentum, and an equation for the transport of volumetric fraction were solved using the Finite Volume Method (FVM). The multiphase model Volume of Fluid (VOF) was applied for the air-water interaction. The results showed that, in general, lower values of the vertical distance between the ramps (Hg) led to higher values of the average overtopping dimensionless flow (). Moreover, the geometric evaluation of the degree of freedom Hg through the Constructal Design method proved to be an important tool because some configuration of the ramps of the overtopping device facilitated the flow of water to the reservoir of the device, and others made it difficult. The maximum value of the average overtopping dimensionless flow was max = 0.044, with a difference of 2.23% for the value obtained with empirical equation found in the literature, for the vertical distance equal to Hg = 0.10.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

242-258

Citation:

Online since:

November 2022

Export:

Price:

* - Corresponding Author

[1] J. M. B. P. Cruz, A. N. Sarmento. A. Energia das ondas: introdução aos aspectos tecnológicos, econômicos e ambientais. Instituto do Ambiente, Portugal, (2004).

Google Scholar

[2] M. Shadman, C. Silva, D. Faller, Z. Wu, L. P. F. Assad, L. Landau, C. Levi, S. Estefen. Ocean renewable energy potential, technology, and deployments: A case study of Brazil. Energies, 12 (19) (2019). https://doi.org/10.3390/en12193658.

DOI: 10.3390/en12193658

Google Scholar

[3] F. P. Fleming. Avaliação do potencial de energias oceânicas no Brasil. Master's degree, Universidade Federal do Rio de Janeiro, (2012).

DOI: 10.1590/1807-01912016223524

Google Scholar

[4] J. P. Kofoed. Wave overtopping of marine structures - utilization of wave energy. PhD Thesis, Aalborg University, (2002).

Google Scholar

[5] J. P. Kofoed, P. Frigaard, E. Friis-Madsen, H. C. Sørensen. Prototype testing of the wave energy converter wave dragon. Renewable Energy, v. 31, n. 2, (2006) 181–189. https://doi.org/10.1016/j.renene.2005.09.005.

DOI: 10.1016/j.renene.2005.09.005

Google Scholar

[6] L. Margheritini, D. Vicinanza, P. Frigaard. SSG wave energy converter: Design, reliability and hydraulic performance of an innovative overtopping device. Renewable Energy, v. 34, n. 5, (2009) 1371–1380. https://doi.org/10.1016/j.renene.2008.09.009.

DOI: 10.1016/j.renene.2008.09.009

Google Scholar

[7] D. Vicinanza, P. Contestabile, J. Q. H. Nørgaard, T. L. Andersen. Innovative rubble mound breakwaters for overtopping wave energy conversion. Coastal Engineering, v. 88, (2014) 154–170. https://doi.org/10.1016/j.coastaleng.2014.02.004.

DOI: 10.1016/j.coastaleng.2014.02.004

Google Scholar

[8] C. Iuppa, P. Contestabile, L. Cavallaro, E. Foti, D. Vicinanza. Hydraulic performance of an innovative breakwater for overtopping wave energy conversion. Sustainability, vol. 8, (2016) 1-20. https://doi.org/10.3390/su8121226.

DOI: 10.3390/su8121226

Google Scholar

[9] Z. Liu, Z. Han, H. Shi, W. Yang. Experimental study on multi-level overtopping wave energy convertor under regular wave conditions. International Journal of Naval Architecture and Ocean Engineering, (2017) 1–9. https://doi.org/10.1016/j.ijnaoe.2017.10.004.

DOI: 10.1016/j.ijnaoe.2017.10.004

Google Scholar

[10] P. Contestabile, C. Luppa, E. Di Lauro, L. Cavallaro, L. T. Andersen, D. Vicinanza. Wave loadings acting on innovative rubble mound breakwater for overtopping wave energy conversion. Coastal Engineering. (2017) 60-74. https://doi.org/10.1016/j.coastaleng.2017.02.001.

DOI: 10.1016/j.coastaleng.2017.02.001

Google Scholar

[11] Z. Liu, B. Hyun, J. Jin.Numerical Prediction for Overtopping Performance of OWEC. J. Korean Soc. Mar. Environ. Eng. (2008) 35–41. http://dx.doi.org/10.1109/OCEANSKOBE. 2008.4531009.

DOI: 10.1109/oceanskobe.2008.4531009

Google Scholar

[12] B. W. Nam, S. H. Shin, K. Y. Hong, S. W. Hong. Numerical Simulation of Wave Flow over the Spiral-Reef Overtopping Device. The Eighth ISOPE Pacific/Asia Offshore Mechanics Symposium. (2008) 262-267.

Google Scholar

[13] C. Beels, P. Troch, K. De Visch, J. P. Kofoed, G. De Backer. Application of the time-dependent mild-slope equations for the simulation of wake effects in the lee of a farm of Wave Dragon wave energy converters. Renewable Energy. (2010) 1644–1661. http://dx.doi.org/10.1016/j.renene.2009.12.001.

DOI: 10.1016/j.renene.2009.12.001

Google Scholar

[14] J. Jin, Z. Liu, K. Hong, B. S. Hyun. 3D Numerical Investigation on Reservoir System for an Overtopping Wave Energy Convertor. J. Navig. Port Res. Int., (2012) 97–103. http://dx.doi.org/10.5394/KINPR.2012.36.2.97.

DOI: 10.5394/kinpr.2012.36.2.97

Google Scholar

[15] L. Margheritini, V. Stratigaki, P. Troch. Geometry Optimization of an Overtopping Wave Energy Device Implemented into the New Breakwater of the Hanstholm Port Expansion. Twenty-Second Int. Offshore Polar Eng. Conf. (2012) 593–600.

Google Scholar

[16] J. H. Nørgaard, T. L. Andersen. Investigation of Wave Transmission from a Floating Wave Dragon. In proceedings of the Twenty –second International Offshore and Polar Engineering Conference (2012).

Google Scholar

[17] M. A. Musa, A. Y. Maliki, M. F. Ahmad, O. Yaakob, K. B. Samo, M. Z. Ibrahim. Prediction of energy performance by adopting overtopping breakwater for energy conversion (OBREC) concept in Malaysia waters. Journal of Environmental Science and Technology. Vol. 9, (2016) 417-426. http://dx.doi.org/10.3923/jest.2016.417.426.

DOI: 10.3923/jest.2016.417.426

Google Scholar

[18] S. Jungrungruengtaworn, B. S. Hyun. Influence of slot width on the performance of multi-stage overtopping wave energy converters. International Journal of Naval Architecture and Ocean Engineering. (2017) 1-9. http://dx.doi.org/10.1016/j.ijnaoe.2017.02.005.

DOI: 10.1016/j.ijnaoe.2017.02.005

Google Scholar

[19] P. Contestabile, D. Vicinanza. Coastal defense integrating wave-energy-based desalination: a case study in Madagascar. Journal of Marine Science and Engineering. Vol. 6, (2018) 1-17. http://dx.doi.org/10.3390/jmse6020064.

DOI: 10.3390/jmse6020064

Google Scholar

[20] D. V. E. Barbosa, L. G. Andrei, E. D. dos Santos, J. A. Souza. Overtopping device numerical study: openfoam solution verification and evaluation of curved ramps performances. Journal of Heat and Mass Transfer. Vol. 131, (2019) 411-423. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.071.

DOI: 10.1016/j.ijheatmasstransfer.2018.11.071

Google Scholar

[21] V. E. Kralli, N. Theodossiou, T. Karambas. Optimal design of overtopping breakwater for energy conversion (OBREC) system using the harmony search algorithm. Frontiers in Energy Research, vol. 7, (2019). https://doi.org/10.3389/fenrg.2019.00080.

DOI: 10.3389/fenrg.2019.00080

Google Scholar

[22] M. A. Mustapa, O. B. Yaakob, Y. M. Ahmed. Numerical simulation of the overtopping-ramp design of multistage overtopping wave energy breakwater hybrid device. Journal of Innovative Technology and Exploring Engineering, vol. 9, (2019).

DOI: 10.35940/ijitee.a8113.119119

Google Scholar

[23] Z. Wan, Z. Yao, T. Song, J. Chen. Hydrodynamic characteristics of the multi-level overtopping wave power decide. Journal of Low Frequency, Noise, Vibration and Active Control, vol. 38, (2019) 1314-1326. http://dx.doi.org/10.1177/1461348418813745.

DOI: 10.1177/1461348418813745

Google Scholar

[24] E. D. Lauro, M. Maza, J. L. Lara, I. J. Losada, P. Contertabile, D. Vicinanza. Advantages of an innovative vertical breakwater with an overtopping wave energy converter. Coastal Engineering, vol. 159, (2020). http://dx.doi.org/10.1016/j.coastaleng.2020.103713.

DOI: 10.1016/j.coastaleng.2020.103713

Google Scholar

[25] T. Cabral, D. Clemente, P. R. Santos, F. T. Pinto, T. Morais, F. Belga, H. Cestaro. Performance assessment of a hybrid wave energy converter integrated into a harbor breakwater. Energies, 13, 236, (2020). http://dx.doi.org/10.3390/en13010236.

DOI: 10.3390/en13010236

Google Scholar

[26] S. Jungrungruengtaworn, N. Thaweewat, B. S. Hyun. Three-dimensional effects on the performance of multi-level overtopping wave energy converter. IOP Conference Series: Materials Science and Engineering, vol. 1137, Issue 1, (2021) 012016. http://dx.doi.org/10.1088/1757-899X/1137/1/012016.

DOI: 10.1088/1757-899x/1137/1/012016

Google Scholar

[27] B. N. Machado, M. M. Zanella, M. N. Gomes, J. A. Souza, E. D. dos Santos, L. A. Isoldi, L. A. O. Rocha. Numerical Analysis of the Ramp Shape Influence in an Overtopping Converter. XXXII CILAMCE -Iberian Latin American Congress on Computational Methods in Engineering, Ouro Preto. (2011).

DOI: 10.20906/cps/cilamce2015-0500

Google Scholar

[28] B. N. Machado, M. M. Zanella, M. N. Gomes, P. R. F. Teixeira, E. D. dos Santos, L. A. Isoldi, L. A. O. Rocha. Constructal Design of an Overtopping Wave Energy Converter. Constructal Law Conference, Porto Alegre (2011).

DOI: 10.1016/j.renene.2017.11.061

Google Scholar

[29] E. D. dos Santos, B. M. Machado, M. M. Zanella, M. N. Gomes, J. A. Souza, L. A. Isoldi, L.A. O. Rocha. Numerical Study of the Effect of the Relative Depth on the Overtopping Wave Energy Converters According to Constructal Design. Defect Diffus. Forum. (2014) 232–244. http://dx.doi.org/10.4028/www.scientific.net/DDF.348.232.

DOI: 10.4028/www.scientific.net/ddf.348.232

Google Scholar

[30] M. M. Goulart, J. C. Martins, I. C. A. Junior, M. N. Gomes, J. A. Souza, L. A. O. Rocha, L. A. Isoldi, E. D. dos Santos. Constructal design of an onshore overtopping device in real scale for two different depths. Mar. Syst. Ocean Technol. (2015) 1–10. http://dx.doi.org/10.1007/s40868-015-0010-7.

DOI: 10.1007/s40868-015-0010-7

Google Scholar

[31] J. C. Martins, D. V. E. Barbosa, M. M. Goulart, J. A. Souza, L. A. O. Rocha, M. N. Gomes, L.A. Isoldi, E. D. dos Santos. Constructal Design of an Onshore Overtopping Device in Real Scale for two Different Ocean Wave Periods and Different Areas of the Ramp. In: XXXVI Iberian Latin American Congress on Computational Methods in Engineering, Rio de Janeiro. v. 1. (2015). http://dx.doi.org/10.20906/CPS/CILAMCE2015-0197.

DOI: 10.20906/cps/cilamce2015-0197

Google Scholar

[32] J. C. Martins, M. M. Goulart, J. A. Souza, L. A. Isoldi, E. D. dos Santos, M. N. Gomes, L. A. O. Rocha. Constructal Design of an Onshore Overtopping Device in Real Scale for Different Ramp Construction Areas. In: 23rd ABCM International Congress of Mechanical Engineering, Rio de Janeiro. v. 1. (2015). http://dx.doi.org/10.20906/cps/cob-2015-2255.

DOI: 10.20906/cps/cob-2015-2255

Google Scholar

[33] J. C. Martins, E. D. Santos, L. A. Isoldi, M. N. Gomes, L. A. O. Rocha. Geometric evaluation of the ramp of an overtopping device by means of constructal design and a wave. Proceedings of the XXXVIII Iberian Latin-American Congress on Computational Methods in Engineering. (2017). http://dx.doi.org/10.20906/CPS/CILAMCE2017-0549.

DOI: 10.20906/cps/cilamce2017-0549

Google Scholar

[34] J. C. Martins, M. M. Goulart, M. N. Gomes, L. A. Isoldi, L. A. O. Rocha, E. D. dos Santos. Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design. Renewable Energy, v. 118 (2018) 727–741. http://dx.doi.org/10.1016/j.renene.2017.11.061.

DOI: 10.1016/j.renene.2017.11.061

Google Scholar

[35] A. Bejan. Shape and Structure, From Engineering to Nature. Cambridge University Press, New York. (2000).

Google Scholar

[36] A. Bejan, S. Lorente. Design with Constructal Theory. John Wiley & Sons, Hoboken, N.J. (2008).

Google Scholar

[37] EurOtop. Manual on wave overtopping of sea defenses and related structures (2018).

Google Scholar

[38] S. V. Patankar. Numerical heat transfer and fluid flow, McGraw Hill, New York, USA. (1980).

Google Scholar

[39] H. K. Versteeg, W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson, 503 p. (2007).

Google Scholar

[40] C. W. Hirt, B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39, (1981) 201–225.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[41] K. Hasselmann, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburn, P. Müller, D. J. Olbers, K. Richter, W. Sell, H. Walden. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsche Hydrographische Zeitschrift, Reihe A, (1973).

Google Scholar

[42] L. E. S. B. Almeida, N. M. L. Rosauro, E. E. Toldo JR.. Análise preliminar das marés na barra do rio Tramandaí. XII Simpósio Brasileiro de Recursos Hídricos. (1997) 560-566.

Google Scholar

[43] D. C. Cuchiara, E. H. Fernandes, J. C. Strauch, J. C. Winterwerp, L. J. Calliari. Determination of the wave climate for the southern Brazilian shelf. Continental Shelf Research. Vol. 29, (2009) 545-555. https://doi.org/10.1016/j.csr.2008.09.025.

DOI: 10.1016/j.csr.2008.09.025

Google Scholar

[44] R. C. Lisboa, P. R. F. Teixeira, F. R. Torres E. Didier. Numerical evaluation of the power output of an oscillating water column wave energy converter installed in the southern Brazilian coast. Energy. (2018). https://doi.org/10.1016/j.energy.2018.08.079.

DOI: 10.1016/j.energy.2018.08.079

Google Scholar

[45] H. Schlichting. Boundary Layer Theory, 7th ed., McGraw-Hill, Nova York, USA. (1979).

Google Scholar

[46] ANSYS. ANSYS Fluent: Theory Guide. (2015).

Google Scholar

[47] J. M. J. Journée, W. W. Massie. Offshore Hydrodynamics First edition. (2001).

Google Scholar

[48] M. Elangovan. Simulation of irregular waves by CFD. World Academy of Science, Engineering and Technology, V. 5, (2011) 427-431. https://doi.org/10.5281/zenodo.1076320.

Google Scholar

[49] R. G. Dean, R. A. Dalrymple. Water Wave Mechanics for Engineers and Scientists. vol. 2, World Scientific. (1991).

Google Scholar

[50] M. Horko. CFD Optimisation of an oscillating water column wave energy converter. Master's degree, University of Western Australia, (2007).

Google Scholar

[51] M. E. McCormick. Ocean engineering wave mechanics. John Wiley & Sons, New York, (1976).

Google Scholar

[52] S. K. Chakrabarti. Handbook of offshore engineering. Elsevier, Illinois, (2005).

Google Scholar

[53] M. N. Gomes, L. A. Isoldi, E. D. Santos, L. A. O. Rocha. Análise de malhas para geração numérica de ondas em tanques. VII Congresso Nacional de Engenharia Mecânica - CONEM 2012, 2012. http://repositorio.furg.br/handle/1/4995.

DOI: 10.26678/abcm.conem2022.con22-0489

Google Scholar