Effects of Ce on Microstructure of As-Cast Mg-6Zn Alloy

Article Preview

Abstract:

Phase constitution and phase transition temperature are important factors to influence deformation parameters, recrystallization behavior and density of precipitates of wrought Mg-Zn-Ce alloys. In this work the microstructures and phase constitution of as-cast Mg-6Zn-xCe (x = 0.6, 1, 2) alloys were characterized by XRD, SEM, TEM and DTA. The results show that the major compounds in Mg-6Zn-0.6Ce are blocky Mg4Zn7 phase, laminar Mg7Zn3 phase and cellular T phase. All compounds are almost blocky and cellular T phase in Mg-6Zn-1Ce alloy, and all T phase transformed to block in Mg-6Zn-2Ce alloy. The onset temperatures of phase transformation of T phase are increased with increasing Ce contents due to the decrease of solid solubility of Zn in T phase. The corresponding endothermic peaks of T phase in Mg-6Zn-0.6Ce, Mg-6Zn-1Ce and Mg-6Zn-2Ce are 358 °C, 494 °C and 514 °C, respectively. The increase of content of Ce result in the decrease of the concentrations of Zn in matrix, which leads to the decrease of β1′ precipitate density and the increase of onset temperatures of melting of matrix.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1072)

Pages:

11-19

Citation:

Online since:

October 2022

Export:

Price:

* - Corresponding Author

[1] G. Arruebarrena, I. Hurtado, J. Vainola, et al., Development of investment-casting process of Mg-alloys for aerospace applications, Adv. Eng. Mater. 9 (2007) 751-756.

DOI: 10.1002/adem.200700154

Google Scholar

[2] D. Xu, L. Liu, Y. Xu, et al., The effect of precipitates on the mechanical properties of ZK60-Y alloy, Mater. Sci. Eng. A 420 (2006) 322-332.

Google Scholar

[3] J. Buha, Grain refinement and improved age hardening of Mg-Zn alloy by a trace amount of V, Acta Mater. 56 (2008) 3533-3542.

DOI: 10.1016/j.actamat.2008.03.038

Google Scholar

[4] J. Buha, Reduced temperature (22-100 °C) ageing of an Mg-Zn alloy, Mater. Sci. Eng. A 492 (2008) 11-19.

DOI: 10.1016/j.msea.2008.02.038

Google Scholar

[5] B. Langelier, S. Esmaeili, Effects of Ce additions on the age hardening response of Mg-Zn alloys, Mater. Charact. 101 (2015) 1-8.

DOI: 10.1016/j.matchar.2014.12.024

Google Scholar

[6] R. Agarwal, S.G. Fries, H.L. Lukas, et al., Assessment of the Mg-Zn system, Z. Metallkd. 83 (1992) 216-223.

Google Scholar

[7] X. Shao, Z. Yang, X, Ma, Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure, Acta Mater. 58 (2010) 4760-4771.

DOI: 10.1016/j.actamat.2010.05.012

Google Scholar

[8] T. Homma, N. Kunito, S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scr. Mater. 61 (2009) 644-647.

DOI: 10.1016/j.scriptamat.2009.06.003

Google Scholar

[9] W. Yang, X. Guo, A high strength Mg-6Zn-1Y-1Ce alloy prepared by hot extrusion, J. Wuhan University Tech. 28 (2013) 389-395.

DOI: 10.1007/s11595-013-0701-x

Google Scholar

[10] W. Yang, X. Guo, High strength magnesium alloy with α-Mg and W-phase processed by hot extrusion. Trans. Nonferr. Met. Soc. China 21 (2011) 2358-2364.

DOI: 10.1016/s1003-6326(11)61020-0

Google Scholar

[11] B. Wu, J. Li, L. Liu, et al., Effect of Zener-Hollomon parameter on high-temperature deformation behaviors of Mg-6Zn-1.5Y-0.5Ce-0.4Zr alloy, Acta Metall. Sin. 34 (2021) 606-616.

DOI: 10.1007/s40195-020-01163-4

Google Scholar

[12] Z.H. Chen, W. Wang, D. Chen, et al., Microstructures and Creep Properties of Mg-2.5Zn-xCe (x = 4, 6 and 8 mass%) Alloys. High Temp. Mat. Pr-isr. 34 (2015) 213-220.

Google Scholar

[13] M.L. He, T.J. Luo, Y.T. Liu, et al., Effects of Cu and Ce co-addition on the microstructure and mechanical properties of Mg-6Zn-0.5Zr alloy, J. Alloys compd. 767 (2018) 1216-1224.

DOI: 10.1016/j.jallcom.2018.07.169

Google Scholar

[14] Y. Chino, X. Huang, K. Suzuki, et al., Microstructure, texture and mechanical properties of Mg-Zn-Ce alloy extruded at different temperatures, Mater. Trans. 52 (2011) 1104-1107.

DOI: 10.2320/matertrans.mc201008

Google Scholar

[15] Y. Chino, X. Huang, K. Suzuki, et al., Texture formation and room-temperature formability of rolled Mg-Zn-Ce alloys, Mater. Trans. 55 (2014) 1190-1195.

DOI: 10.2320/matertrans.mc201404

Google Scholar

[16] T. Wu T, L. Jin, W.X. Wu, et al., Improved ductility of Mg-Zn-Ce alloy by hot pack-rolling, Mater. Sci. Eng. A 584 (2013) 97-102.

DOI: 10.1016/j.msea.2013.07.011

Google Scholar

[17] M. Sanjari, S.F. Farzadfar, T. Sakai, et al., Microstructure and texture evolution of Mg-Zn-Ce magnesium alloys sheets and associated restoration mechanisms during annealing, Mater. Sci. Eng. A 561 (2013) 191-202.

DOI: 10.1016/j.msea.2012.10.075

Google Scholar

[18] Y.Z. Du, D.J. Liu, Y.F. Ge, et al., Effects of deformation parameters on microstructure and texture of Mg-Zn-Ce alloy, Trans. Nonferr. Met. Soc. China 30 (2020) 2658-2668.

DOI: 10.1016/s1003-6326(20)65410-3

Google Scholar

[19] X. Huang, K. Suzuki, Y. Chino, Static recrystallization behavior of hot-rolled Mg-Zn-Ce magnesium alloy sheet, J. Alloys Compd. 724 (2017) 981-990.

DOI: 10.1016/j.jallcom.2017.07.093

Google Scholar

[20] Y. Du, M. Zheng, X. Qiao, et al., Enhancing the strength and ductility in Mg-Zn-Ce alloy through achieving high density precipitates and texture weakening, Adv. Eng. Mater. 19 (2017) 1700487.

DOI: 10.1002/adem.201700487

Google Scholar

[21] H. Yu, W. Yang, H. Cui, et al., Microstructures and tensile properties of hot-extruded Mg-6Zn-xCe (x = 0, 0.6, 1.0, 2.0) alloys, J. Wuhan University Tech. 34 ( 2019) 150-155.

DOI: 10.1007/s11595-019-2029-7

Google Scholar

[22] M. Drits, E. Drozdova, I. Korol'kova, et al., Investigation of polythermal sections of the Mg-Zn-Ce system in the magnesium-rich region, Russ. Metall. 1989 (1989) 195-197.

Google Scholar

[23] D. Kevorkov, M. Pekguleryuz, Experimental study of the Ce-Mg-Zn phase diagram at 350 °C via diffusion couple techniques, J. Alloys Compd. 478 (2009) 427-436.

DOI: 10.1016/j.jallcom.2008.11.119

Google Scholar

[24] V. Pavlyuk, P. Solokha, G. Dmytriv, et al., The Heusler-type alloy MgZn2Ce, Acta Crystallogr. Sect. E 63 (2007) i161.

DOI: 10.1107/s1600536807028899

Google Scholar

[25] V. Pavlyuk, P. Solokha , O. Zelinska, et al., Ce20Mg19Zn81: a new structure type with a giant cubic cell, Acta Crystallogr. Sect. C 64 (2008) i50-i52.

DOI: 10.1107/s0108270108015862

Google Scholar

[26] M. Huang, H. Li, H. Ding, et al., Partial phase relationships of Mg-Zn-Ce system at 350 °C, Trans. Nonferr. Met. Soc. China 19 (2009) 681-685.

Google Scholar

[27] W.P. Yang, X.F. Guo, Z.X. Lu. Crystal structure of the ternary Mg–Zn–Ce phase in rapidly solidified Mg–6Zn–1Y–1Ce alloy, J. Alloys Compd. 521 (2012) 1-3.

DOI: 10.1016/j.jallcom.2011.12.144

Google Scholar

[28] U. Kolitsch, P. Bellen, S. Kaesche, et al., Cerium-Magnesium-Zinc. Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams, 17 (2000) 168-176.

Google Scholar

[29] C. Chiu, J. Grobner, A. Kozlov, et al., Experimental study and thermodynamic assessment of ternary Mg-Zn-Ce phase relations focused on Mg-rich alloys, Intermetallics 18 (2010) 399-405.

DOI: 10.1016/j.intermet.2009.08.013

Google Scholar

[30] H. Shi, Q. Li, J. Zhang, et al., Re-assessment of the Mg-Zn-Ce system focusing on the phase equilibria in Mg-rich corner, Computer Coupling of Phase Diagrams and Thermochemistry 68 (2020) 101742.

DOI: 10.1016/j.calphad.2020.101742

Google Scholar