Study of p-n Heterojunction Thin Films for Reducing Gas Sensing Application Fabricated by Thermal Evaporation Technique

Article Preview

Abstract:

Gas sensors have been widely implemented to solve concerns of air pollution, monitor human health, and crop yields. Because of its high sensitivity, quick response time, and short recovery time, metal oxide semiconductor (MOS) gas sensors have become a significant topic of research in the field of gas sensing. In the recent decade, many researchers are work on the different types of pure and doped MOS for improve gas sensor response. The present research work deals with the fabrication of p-n heterojunction thin films on alumina substrate by using thermal evaporation technique for reducing gas sensing application. In the current research work, ZnO is used as a functional material and MgO as a dopant. The structural, electrical, and gas sensing properties of fabricated p-n (CuO-ZnO) heterojunction thin films were studied. The resistivity of p-n heterojunction thin films was found to be 23.461Ω/m. The found to be negative to p-n heterojunction thin films. The morphological, elemental and structural characterization of fabricated CuO-ZnO heterojunction thin films were analyzed by using , EDAX and XRD standard tools respectively. By using Scherer’s formula the crystallite size of CuO-ZnO heterojunction thin films was found as 36.83 nm. The fabricated CuO-ZnO heterojunction thin films were exposed to reducing gases such as Liquefied petroleum (LPG), Ammonia (NH3), Ethanol (C2H5OH), and Dichlorofluoromethane (R12) to determine gas response and selectivity. Fabricated CuO-ZnO heterojunction thin films shows maximum response to LPG gas as compare to other gases. The maximum sensitivity has to be found 89.23% to LPG gas of concentration 300 ppm. Fabricated MgO-ZnO thin films also show fast response and recovery time in seconds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-82

Citation:

Online since:

June 2022

Export:

Price:

* - Corresponding Author

[1] Yamazoe N, toward innovations of gas sensor technology. Sensors and Actuators B: Chemical 108, no. 1-2 (2005): 2-14.

DOI: 10.1016/j.snb.2004.12.075

Google Scholar

[2] Kim, J.H, Low-voltage-driven sensors based on ZnO nanowires for room-temperature detection of NO2 and CO gases. ACS applied materials & interfaces 11, no. 27 (2019): 24172-24183.

DOI: 10.1021/acsami.9b07208

Google Scholar

[3] Patil S. J, Semiconductor metal oxide compounds based gas sensors: A literature review. Frontiers of Materials Science 9, no. 1 (2015): 14-37.

Google Scholar

[4] Dey, Ananya. Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B 229 (2018): 206-217.

DOI: 10.1016/j.mseb.2017.12.036

Google Scholar

[5] Xue, S, Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review. Materials 14, no. 15 (2021): 4263.

DOI: 10.3390/ma14154263

Google Scholar

[6] Kumar R, ZnO nanostructured thin films: Depositions, properties and applications—A review. Materials Express 5, no. 1 (2015): 3-23.

DOI: 10.1166/mex.2015.1204

Google Scholar

[7] Hwang, Dae-Kue, Min-Suk Oh, Jae-Hong Lim, and Seong-Ju Park. ZnO thin films and light-emitting diodes. Journal of Physics D: Applied Physics 40, no. 22 (2007): R387.

DOI: 10.1088/0022-3727/40/22/r01

Google Scholar

[8] Abdel-Karim, R., Y. Reda, and A. Abdel-Fattah. Nanostructured materials-based nanosensors. Journal of the Electrochemical Society 167, no. 3 (2020): 037554.

DOI: 10.1149/1945-7111/ab67aa

Google Scholar

[9] Eranna, G., B. C. Joshi, D. P. Runthala, and R. P. Gupta. Oxide materials for development of integrated gas sensors—a comprehensive review. Critical Reviews in Solid State and Materials Sciences 29, no. 3-4 (2004): 111-188.

DOI: 10.1080/10408430490888977

Google Scholar

[10] Anukunprasert, T., C. Saiwan, and Enrico Traversa. The development of gas sensor for carbon monoxide monitoring using nanostructure of Nb–TiO2. Science and Technology of Advanced Materials 6, no. 3-4 (2005): 359-363.

DOI: 10.1016/j.stam.2005.02.020

Google Scholar

[11] Bochenkov, V. E., and G. B. Sergeev. Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Metal oxide nanostructures and their applications 3 (2010): 31-52.

Google Scholar

[12] Park, Sunghoon, Soohyun Kim, Hyejoon Kheel, Soong Keun Hyun, Changhyun Jin, and Chongmu Lee. Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor. Materials Research Bulletin 82 (2016): 130-135.

DOI: 10.1016/j.materresbull.2016.02.011

Google Scholar

[13] Das, Susmita, and Vimal Chandra Srivastava. An overview of the synthesis of CuO-ZnO nanocomposite for environmental and other applications. Nanotechnology Reviews 7, no. 3 (2018): 267-282.

DOI: 10.1515/ntrev-2017-0144

Google Scholar

[14] Nakamura, Yoshinobu, Hiroyuki Yoshioka, Msaru Miyayama, Hiroaki Yanagida, Tsuyoshi Tsurutani, and Yuji Nakamura. Selective CO gas sensing mechanism with CuO/ZnO heterocontact. Journal of the Electrochemical Society 137, no. 3 (1990): 940.

DOI: 10.1149/1.2086583

Google Scholar

[15] Baptista, Andresa, F. J. G. Silva, J. Porteiro, J. L. Míguez, G. Pinto, and L. Fernandes. On the physical vapour deposition (PVD): Evolution of magnetron sputtering processes for industrial applications. Procedia Manufacturing 17 (2018): 746-757.

DOI: 10.1016/j.promfg.2018.10.125

Google Scholar

[16] Shahidi, Sheila, Bahareh Moazzenchi, and Mahmood Ghoranneviss. A review-application of physical vapor deposition (PVD) and related methods in the textile industry. The European Physical Journal Applied Physics 71, no. 3 (2015): 31302.

DOI: 10.1051/epjap/2015140439

Google Scholar

[17] Ponzoni, Andrea, Camilla Baratto, Nicola Cattabiani, Matteo Falasconi, Vardan Galstyan, Estefania Nunez-Carmona, Federica Rigoni, Veronica Sberveglieri, Giulia Zambotti, and Dario Zappa. Metal oxide gas sensors, a survey of selectivity issues addressed at the SENSOR Lab, Brescia (Italy). Sensors 17, no. 4 (2017): 714.

DOI: 10.3390/s17040714

Google Scholar

[18] Tsay C.Y., Cheng H.C., Tung Y.T., Tuan W.H., and Lin C.K., Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method, Thin Solid Films, 2008, 517 (3): 1032.

DOI: 10.1016/j.tsf.2008.06.030

Google Scholar

[19] Sertel, Buse Comert, Nihan Akin Sonmez, Meltem Donmez Kaya, and Suleyman Ozcelik. Development of MgO: TiO2 thin films for gas sensor applications. Ceramics International 45, no. 3 (2019): 2917-2921.

DOI: 10.1016/j.ceramint.2018.11.079

Google Scholar

[20] Yatskiv, R., Tiagulskyi, S., Grym, J., Vaniš, J., Bašinová, N., Horak, P., Torrisi, A., Ceccio, G., Vacik, J. and Vrňata, M., (2020). Optical and electrical characterization of CuO/ZnO heterojunctions. Thin Solid Films, 693, p.137656.

DOI: 10.1016/j.tsf.2019.137656

Google Scholar

[21] Tupe, Umesh Jagannath, M. S. Zambare, Arun Vitthal Patil, and Prashant Bhimrao Koli. The Binary Oxide NiO-CuO Nanocomposite Based Thick Film Sensor for the Acute Detection of Hydrogen Sulphide Gas Vapours. Material Science Research India 17, no. 3 (2020): 260-269.

DOI: 10.13005/msri/170308

Google Scholar

[22] Halwar, Dharma K., Vikas V. Deshmane, and Arun V. Patil. Orthorhombic molybdenum trioxide micro-planks as carbon monoxide gas sensor. Materials Research Express 6, no. 10 (2019): 105913.

DOI: 10.1088/2053-1591/ab403e

Google Scholar

[23] Ahire, Satish Arvind, Arun V. Patil, Ashwini A. Bachhav, Prashant Bhimrao Koli, and Thansing B. Pawar. Designing of Screen-Printed Stannous Oxide Thick Film Sensors Modified by Cobalt and Nitrogen for Sensing Some Toxic Gases and Volatile Organic Compounds. Available at SSRN 3894844 (2021).

DOI: 10.2139/ssrn.3894844

Google Scholar

[24] Vallejo, William, Alvaro Cantillo, Briggitte Salazar, Carlos Diaz-Uribe, Wilkendry Ramos, Eduard Romero, and Mikel Hurtado. Comparative Study of ZnO Thin Films Doped with Transition Metals (Cu and Co) for Methylene Blue Photodegradation under Visible Irradiation. Catalysts 10, no. 5 (2020): 528.

DOI: 10.3390/catal10050528

Google Scholar

[25] Al Abdullah, Khalaf, et al. Synthesis of ZnO nanopowders by using sol-gel and studying their structural and electrical properties at different temperature. Energy Procedia 119 (2017): 565-570.

DOI: 10.1016/j.egypro.2017.07.080

Google Scholar

[26] Nagaraju, P., Y. Vijayakumar, MV Ramana Reddy, and U. P. Deshpande. Effect of vanadium pentoxide concentration in ZnO/V2O5 nanostructured composite thin films for toluene detection. RSC advances 9, no. 29 (2019): 16515-16524.

DOI: 10.1039/c9ra02356a

Google Scholar

[27] Patil, Arun, Chandrakant Dighavkar, Ratan Borse, Shriram Patil, and Rajendra Khadayate. Effect of Cr2O3 by Doping and Dipping On Gas Sensing Characteristics of ZnO Thick Films. Journal of Electron Devices 15 (2012): 1274-1281.

Google Scholar

[28] Muchharla, Baleeswaraiah, T. N. Narayanan, Kaushik Balakrishnan, Pulickel M. Ajayan, and Saikat Talapatra. Temperature dependent electrical transport of disordered reduced graphene oxide. 2D Materials 1, no. 1 (2014): 011008.

DOI: 10.1088/2053-1583/1/1/011008

Google Scholar

[29] Garde, A. S. LPG and NH3 Sensing Properties of SnO2 Thick Film Resistors Prepared by Screen Printing Techniqu. Sensors & Transducers 122, no. 11 (2010): 128.

Google Scholar

[30] Deore, M. K., V. B. Gaikwad, R. M. Chaudhari, N. U. Patil, P. D. Hire, S. B. Deshmukh, G. E. Patil, V. G. Wagh, and G. H. Jain. Formulation, characterization and LPG-sensing properties of CuO-doped ZnO thick film resistor. In Advancement in Sensing Technology, pp.283-298. Springer, Berlin, Heidelberg, (2013).

DOI: 10.1007/978-3-642-32180-1_16

Google Scholar

[31] Nemade, K. R., and S. A. Waghuley. LPG sensing performance of CuO–Ag2O bimetallic oxide nanoparticles. St. Petersburg Polytechnical University Journal: Physics and Mathematics 1, no. 3 (2015): 249-255.

DOI: 10.1016/j.spjpm.2015.07.006

Google Scholar

[32] Deore, Madhavrao K., Vishwas B. Gaikwad, and Gotan H. Jain. Role of CuO-ZnO Heterojunctions in Gas Sensing Response of CuO-ZnO Thick Films. Journal of Physical Science and Application 6, no. 2 (2016): 51-60.

DOI: 10.17265/2159-5348/2016.02.008

Google Scholar

[33] Liu, Jinhuai, Xingjiu Huang, Gang Ye, Wei Liu, Zheng Jiao, Wnaglian Chao, Zhongbai Zhou, and Zenglian Yu. H2S detection sensing characteristic of CuO/SnO2 sensor. Sensors 3, no. 5 (2003): 110-118.

DOI: 10.3390/s30500110

Google Scholar